

Bristol-Myers Squibb Manufacturing Company

RCRA Corrective Action Program Quarterly Progress Report No. 67 2nd Quarter 2017

Bristol-Myers Squibb Manufacturing Company Humacao, Puerto Rico

July 2017

Table of Contents

1.0	Intro	duction	1
	1.1.	Former Underground Tank Farm (SWMU #3)	
	1.2.	Former Brule Incinerator (SWMU #9)	
	1.3.	Building 5 Area (SWMU #20)	2
	1.4.	Site-Wide	4
2.0	Desc	ription of Work Completed	<u>ç</u>
	2.1.	Site-Wide	
		2.1.1. Groundwater Elevation Monitoring	
		2.1.2. Release Assessment Phase 1 Program	
		2.1.3. Release Assessment Phase 2A Program	
		2.1.4. Phase 2C Potential Preferential Pathway Evaluation	
	2.2.	Former Tank Farm Area	
	2.3.	Brule Area	13
	2.4.	Building 5 Area	14
3.0	Sumi	mary of Findings	1.5
0.0	3.1.	Former Tank Farm Area	
	3.2.	Former Brule Incinerator Area	
	3.3.	Building 5 Area	
	3.4.	Release Assessment Phase 1 Program	
	3.5.	Release Assessment Phase 2A Program	
	3.6.	Phase 2C Potential Preferential Pathway Evaluation	
4.0	Sumi	mary of Changes Made	19
5.0	Sumi	mary of Public Participation Activities	10
6.0	Sum	mary of Problems Encountered	19
7.0	Chan	nges in Personnel	20
8.0	Proje	ected Work for Next Reporting Period	20
	8.1.	Site-Wide	20
	8.2.	Former Tank Farm Area	21
	8.3.	Brule Area	
	8.4.	Building 5 Area	21
9.0	Addi	tional Documentation	2 1

Tables

- Table 1 Groundwater Elevation Data January 2017 Through June 2017
- Table 2 Former Tank Farm Area Groundwater Analytical Results March 2017
- Table 3 Former Brule Incinerator Area Groundwater Analytical Results March 2017
- Table 4 Building 5 Area Groundwater Analytical Results March 2017

Table 5 Release Assessment Phase 1 Groundwater Analytical Results – March 2017 Table 6 Release Assessment Phase 2A Groundwater Analytical Results – March 2017 Table 7 Phase 2C In-Situ Groundwater Analytical Results

Figures

Figure 1 Soil Excavation Areas Building 5 Area

Figure 2 Release Assessment Phase 1 Monitoring Well Locations

Figure 3 Release Assessment Phase 2A Monitoring Well Locations

Figure 4 Phase 2C Test Pit and Soil Boring Locations

Figure 5 Location of Monitoring Wells - Former Tank Farm Area

Figure 6 Location of Monitoring Wells - Former Brule Incinerator Area

Figure 7 Location of Monitoring Wells - Building 5 Area

Attachments

Attachment A 1st Quarter 2017 Groundwater Analytical Results and Data Validation Reports (on CD)

Attachment B 1st Quarter 2017 Groundwater Field Data Sheets (on CD) Attachment C Phase 2C Soil Boring Logs and Monitoring Well Construction Details

1.0 Introduction

Bristol-Myers Squibb Manufacturing Company (BMSMC) is currently implementing a Resource Conservation and Recovery Act (RCRA) Corrective Action Program at its pharmaceutical manufacturing facility located in Humacao, Puerto Rico. The program is being conducted in accordance with the provisions of Module III of BMSMC's Final RCRA Hazardous Waste Treatment and Storage Permit No. PRD090021056.

This Quarterly Progress Report has been prepared in accordance with the provisions of Module III, Condition B.8 (a) of the Permit. The report covers the period April 1, 2017 through June 30, 2017. All available information required by Condition B.8 (a)(i) through (viii) is provided below.¹

The RCRA Corrective Action Program addresses three solid waste management units (SWMUs) at which impacts to soil and/or groundwater have been detected. The status of the corrective action program at each SWMU is briefly described below.

1.1. Former Underground Tank Farm (SWMU #3)

The Former Tank Farm (FTF) area consisted of 26 underground storage tanks for the storage of raw materials, kerosene and spent solvents for reclamation. BMSMC submitted a Corrective Measure Study (CMS) Report to United States Environmental Protection Agency (USEPA) in June 2007 that documented the improving groundwater quality and provided recommendations for the Final Corrective Measure. An updated CMS report was submitted to the USEPA in July 2011.

BMSMC conducted quarterly groundwater sampling at seven wells at this SWMU from March 2000 to December 2010 as part of the site-wide monitoring program. On March 12, 2010, BMSMC submitted a request for a permit modification to reduce the groundwater monitoring program. Based on USEPA comments, BMSMC submitted a revised request for a permit modification to the USEPA on July 20, 2010. BMSMC received approval for the permit modification from the USEPA on December 29, 2010. The reduction in groundwater monitoring as detailed in the permit modification was initiated during the March 2011 groundwater sampling event. As per the permit modification, monitoring wells at SWMU #3 are sampled semiannually. Semiannual sampling started with the March 2011 sampling event.

Monitoring wells MW-17 and MW-18, installed during the 2011 Supplemental Field Investigation, were sampled on a voluntary basis from June 2011 to June 2012. A request to include monitoring wells MW-17 and MW-18 into the SWMU #3 groundwater monitoring

¹ A PDF version of the complete Quarterly Progress Report No. 67 including cover letter, text, tables, figures, and appendices is provided on the back cover of this document.

network was included in the Class 2 Permit Modification Request filed with the USEPA on May 16, 2012. On August 14, 2012, BMSMC received approval for the Class 2 Permit Modification incorporating monitoring wells MW-17 and MW-18 into the groundwater monitoring network. Monitoring wells MW-17 and MW-18 were incorporated into the groundwater monitoring network beginning with the September 2012 groundwater sampling event.

A new monitoring well, MW-19, was installed in the Former Underground Tank Farm Area during the Release Assessment Phase 1 Field Program. Installation of this well was proposed by BMSMC in the July 2015 response to USEPA Comments on the 2011 CMS.

1.2. Former Brule Incinerator (SWMU #9)

This SWMU is the site of a former hazardous waste incinerator. The interim corrective measure (ICM) consisted of excavation of petroleum impacted soil. The *Interim Corrective Measure Implementation Report* was submitted to USEPA in February 2002. This report was approved by USEPA in a letter dated March 28, 2002.

A new monitoring well, BR-4, was installed in the Brule area during the Release Assessment Phase 1 Field Program. Installation of this well was proposed by BMSMC in the July 2015 Response to USEPA Comments on the 2011 CMS.

1.3. Building 5 Area (SWMU #20)

This SWMU encompasses an area adjacent to and east of Building 5. BMSMC submitted a revised CMS Report to USEPA in June 2007 that provided recommendations for the Final Corrective Measure. The recommended corrective measure included a combination of source area excavation and Monitored Natural Attenuation (MNA). An updated CMS report was submitted to the USEPA in July 2011.

BMSMC implemented an Interim Corrective Measure (ICM) to address source area soils in the Building 5 Area. The ICM Work Plan, which included four phases of excavation, treatment, and reuse or offsite disposal of impacted soil, was submitted to USEPA in September 2003 and approved by USEPA in December 2004. Four phases of soil excavation and treatment were conducted between 2006 and 2011 during which approximately 7,400 cubic yards of soil was excavated and treated. Each of the excavation areas (Phase 1 through Phase 4; designated as Areas A through D) are shown on **Figure 1**.

On August 14, 2012, BMSMC received approval for a Class 2 Permit Modification for Temporary Authorization to operate a temporary unit (TU) for the ex-situ treatment of contaminated soil excavated from Area E and the remaining unexcavated soil from Area D that was left in place during the ICM. In addition, the USEPA approved the May 2012 *Temporary Unit Operations and Maintenance Plan* (O&M Plan) and the May 2012 *Building 5 Area Interim*

Corrective Measure Work Plan Area E. Area E ICM soil removal activities were conducted from February 6, 2013 through March 2, 2013. Approximately 1,728 cubic yards of impacted soil were removed and placed into the Biopile for treatment. The Area E excavation area is shown on **Figure 1**.

BMSMC conducted quarterly groundwater sampling at the SWMU #20 from March 2000 to December 2010 as part of the site-wide monitoring program. As per the December 2010 approved permit modification, BMSMC initiated a reduced groundwater monitoring program in March 2011. The reduced groundwater monitoring program includes quarterly sampling at seven wells and semiannual sampling at 13 wells. Semiannual sampling was initiated in March 2011. Semiannual samples are collected in March and September.

On August 14, 2012, BMSMC received approval for the Class 2 Permit Modification to reactivate monitoring well D-1. Semiannual sampling of monitoring well D-1 was initiated in September 2012.

On March 13, 2013, BMSMC received conditional approval of the Class 2 Permit Modification Request for the closure of three existing monitoring wells (G-1R2, D-1, and E-1) and the installation of three replacement monitoring wells (G-1R3, D-1R, and E-1R). Conditional approval of the Class 2 Modification Request was granted pending a determination that replacement well G-1R3 complies with the objectives of the groundwater monitoring program and effectively captures the Building 5 COCs.

On September 18, 2013, BMSMC, in response to the conditional approval of the March 13, 2013 Class 2 Permit Modification Request, submitted a technical memorandum to the USEPA demonstrating the effectiveness and adequacy of the replacement monitoring wells D-1R, E-1R, and G-1R3 to capture the Building 5 COCs.

On May 5, 2014, BMSMC submitted a Class 1 Permit Modification requesting an extension of 45 days to remove hazardous soil, and the remaining non-hazardous soil that met the cleanup criteria as provided in BMSMC Permit Temporary Unit Operations and Maintenance Plan, beyond the previously permitted 90 day removal period.

On June 19, 2014, BMSMC received final approval of the Class 2 Permit Modification Request for the closure of three existing monitoring wells (G-1R2, D-1, and E-1) and the installation of three replacement monitoring wells (G-1R3, D-1R, and E-1R).

On November 14, 2014, BMSMC received conditional approval of the *Building 5 Soil Vapor Investigation Work Plan*. The Work Plan was conditionally approved by the USEPA pending the receipt of a revised Work Plan that addressed minor comments within 45 days of the approval letter. The revised Work Plan was submitted to the USEPA on December 4, 2014.

On February 23, 2015, BMSMC received Comments on the Building 5 Area Source Removal Phase 5 Implementation Report from the USEPA. The comment letter stated that BMSMC must submit a revised *Building 5 Area Source Removal Phase 5 Implementation Report* within 45 days of February 23, 2015. The revised *Building 5 Area Source Removal Phase 5 Implementation Report* was submitted to the USEPA on April 8, 2015.

A new monitoring well pair, S-39S/S-39D, and a deep monitoring S-35D paired with existing shallow monitoring well S-35S, were installed in the Building 5 Area during the Release Assessment Phase 1 Field Program. Installation of these wells was proposed by BMSMC in the March 2016 *Release Assessment Sampling and Analysis Plan*.²

1.4. Site-Wide

On March 14, 2013, BMSMC received the approved USEPA RCRA Permit Application Technical and Administrative Completeness Determination Letter for the May 2010 RCRA Part B Permit Application.

On February 26, 2015, BMSMC received Comments on the Corrective Measures Study Report (July 2011) from the USEPA. In the comment letter, the USEPA stated that BMSMC must submit a revised *Corrective Measures Study Report* within 60 days of February 26, 2015.

- On June 3, 2015, BMSMC received a letter from the USEPA that granted a time extension to respond to the Comments on the Corrective Measures Study. In the time extension letter, the USEPA granted a time extension until July 24, 2015 for the submittal of a revised *Corrective Measures Study Report*.
- On July 22, 2015, BMSMC submitted the Response to USEPA Comments on July 2011
 CMS Report to the USEPA. The Response to USEPA Comments proposed additional
 work in each of the three SWMUs (FTF, Brule, and Building 5 Areas) to address USEPA
 comments on the July 2011 CMS.

On January 27, 2016, BMSMC submitted a Release Notification Letter to the USEPA that identified certain constituents present in groundwater that are currently not included under the Corrective Action Program.

On February 26, 2016, BMSMC submitted a *Release Assessment Report* to the USEPA that identified specific constituents as new compounds of potential concern (COPCs) in the site's SWMUs.

² In the July 2015 Response to USEPA Comments on the 2011 CMS, this location was initially targeted for a direct push soil boring only.

- On September 22, 2016, BMSMC received comments from the USEPA on the February 2016 *Release Assessment Report*.
- On October 3, 2016, BMSMC requested a 30-day time extension to respond to the September 22, 2016 USEPA comments on the February 2016 *Release Assessment Report*. The USEPA granted BMSMC an extension for the submittal of the Response to Comments to November 21, 2016.
- On November 21, 2016, BMSMC submitted the *Final Release Assessment Report* to the USEPA. The *Final Release Assessment Report* included BMSMC's Responses to Comments to the February 2016 Release Assessment Report as Attachment A.
- The USEPA approved the *Final Release Assessment Report* on April 7, 2017.

On March 25, 2016, BMSMC submitted a *Release Assessment Sampling and Analysis Plan*, including an updated *Quality Assurance Project Plan* (QAPP), to complete an onsite groundwater and soil investigation to evaluate potential release(s) of COPCs.

- On September 22, 2016, BMSMC received comments from the USEPA and the Puerto Rico Environmental Quality Board (PREQB) on the March 2016 *Release Assessment Sampling and Analysis Plan*.
- On October 3, 2016, BMSMC requested a 30-day time extension to respond to comments on the *Technical Review of March 2016 Release Assessment Sampling and Analysis Plan*.
- On October 27, 2016, USEPA granted BMSMC an extension for the submittal of the Response to Comments to November 21, 2016.
- On November 21, 2016, BMSMC submitted the *Response to Technical Review of March 2016 Release Assessment Sampling and Analysis Plan* (Attachment 1).
- On June 27, 2017, BMSMC received comments from the USEPA and PREQB on the *Technical Review of the Responses to Comments on the March 2016 Release Assessment Sampling and Analysis Plan*.

On June 14, 2016, BMSMC submitted a *Release Assessment Phase 2A Sampling and Analysis Plan: Offsite Groundwater – South of Facility*, including an updated QAPP, to complete a groundwater investigation to evaluate the potential offsite migration of COPCs in groundwater to the south and southeast of the BMSMC facility.

- On September 22, 2016, BMSMC received comments from the USEPA and the PREQB on the June 2016 Release Assessment Phase 2A Sampling and Analysis Plan: Offsite Groundwater South of Facility.
- On October 3, 2016, BMSMC requested a 30-day time extension to respond to comments on the *Technical Review of the June 2016 Release Assessment Phase 2A Sampling and Analysis Plan: Offsite Groundwater South of Facility.*
- On October 27, 2016, USEPA granted BMSMC an extension for the submittal of the Response to Comments to November 21, 2016.
- On November 21, 2016, BMSMC submitted the *Response to Technical Review of the June 2016 Release Assessment Phase 2A Sampling and Analysis Plan: Offsite Groundwater South of Facility* (Attachment 2).

On August 5, 2016, BMSMC submitted a Preliminary *Notification of Possible Offsite Groundwater Contamination* in accordance with Module III.B.10.a of the Facility RCRA Part B Permit. The Preliminary Notification letter identified the possible offsite migration of low levels of COPCs that exceed background levels under the Ciudad Cristiana community.

On September 7, 2016, BMSMC submitted the *Release Assessment Phase 1 Technical Memorandum* to the USEPA, which presented the findings of the completed Phase 1 groundwater and soil investigation.

- On March 16, 2017, BMSMC received comments from the USEPA and the PREQB on the *Release Assessment Phase 1 Technical Memorandum*, September 2016.
- On May 15, 2017, BMSMC submitted the *Final Release Assessment Phase 1 Technical Memorandum* which also included a response to USEPA and PREQB comments as Attachment A.

On September 7, 2016, BMSMC submitted the *Supplemental Vapor Intrusion Investigation Report Buildings 7*, 8, 15, 18, 30, 42 to the USEPA, which presented the findings of the completed vapor intrusion investigations at Buildings 7, 8, 15, 18, 30, and 42.

On September 9, 2016, BMSMC submitted a *Notification of Possible Offsite Groundwater Contamination* in accordance with Module III.B.10.a of the Facility RCRA Part B Permit. The Notification letter confirmed the offsite migration of low levels of COPCs that exceed background levels under the Ciudad Cristiana residential community.

On September 22, 2016, BMSMC received notification that BMSMC's 2015 *Hazardous Waste Minimization Plan* was found to be in accordance with the Facility RCRA Part B Permit.

On October 17, 2016, BMSMC submitted the *Release Assessment, Phase 2A: Offsite Groundwater – South of Facility Technical Memorandum* to the USEPA. The Phase 2A Technical Memorandum presented the findings of the completed Phase 2A groundwater investigation.

On November 2, 2016, BMSMC received comments from the USEPA on the RCRA Corrective Action Program Quarterly Progress Report No. 62, 1st Quarter 2016.

- On December 16, 2016, BMSMC submitted the *Response to EPA Comments on the RCRA Corrective Action Program Quarterly Progress Report No. 62, 1st Quarter 2016* to the USEPA.
- On March 16, 2017, BMSMC received an acceptance of the December 2016 Response to EPA Comments on the RCRA Corrective Action Program Quarterly Progress Report No. 62, 1st Quarter 2016 from the USEPA and PREQB.
- On May 15, 2017, BMSMC submitted *RCRA Corrective Action Program Quarterly Progress Report No. 62, 1st Quarter 2016 (Revised May 15, 2017)* including a new Attachment A incorporating USEPA and BMSMC correspondence relating to Progress Report No. 62.

On November 21, 2016, BMSMC submitted the *Technical Memorandum Proposed Sampling Program Offsite Groundwater – South of Facility* to the USEPA. This document specifically addressed the USEPA's comments on the June 2016 *Release Assessment Phase 2A Sampling and Analysis Plan: Offsite Groundwater – South of Facility* (previously noted) regarding the reduced target analyte list for offsite monitoring wells installed during the Phase 2A Field Program.

- On March 16, 2017, BMSMC received comments from the USEPA and the PREQB on the *Technical Memorandum Proposed Sampling Program Offsite Groundwater South of Facility*, November 2016.
- On May 15, 2017, BMSMC submitted a Response to Comments to the Technical Review of the Technical Memorandum Proposed Sampling Program Offsite Groundwater South of Facility.

On January 6, 2017, BMSMC submitted the *Onsite Surface Soil Sampling Plan*, including updated QAPP worksheets to evaluate potential impacts to surface soil associated with the Former Tank Farm Area, Former Brule Incinerator Area, and Building 5 Area. The collection of background surface soil samples was also proposed in the *Onsite Surface Soil Sampling Plan*.

• On June 12, 2017, BMSMC received comments from the USEPA and PREQB on the January 6, 2017 *On-Site Surface Soil Sampling and Analysis Plan*.

On January 13, 2017, BMSMC submitted the *Release Assessment Investigation Treatability Testing Work Plan* to undertake pre-design data collection to support evaluation of potential remedial technologies for preventing downgradient migration of COPCs.

• On June 12, 2017, BMSMC received comments from the USEPA and the PREQB on the *Release Assessment Investigation Treatability Testing Work Plan*.

On January 16, 2017, BMSMC submitted the *Phase 2C Release Assessment Potential Preferential Pathway Evaluation Sampling and Analysis Plan* to determine if subsurface utilities (e.g., bedding material and/or potential for infiltration) located downgradient of the facility are acting as potential preferential pathways for contaminant transport. In addition, the *Phase 2C Release Assessment Potential Preferential Pathway Evaluation Sampling and Analysis Plan* proposed the installation of test pits and additional monitoring wells to delineate the extent of 1,4-Dioxane impacts in groundwater adjacent to subsurface utilities located along State Road No. 3.

• On June 12, 2017, BMSMC received comments from the USEPA and PREQB on the January 16, 2017 *Phase 2C Release Assessment Potential Preferential Pathway Evaluation Sampling and Analysis Plan*.

On February 13, 2017, BMSMC submitted the December 2016 offsite groundwater laboratory technical reports and data validation packages (Release Assessment Phase 2A wells) to the USEPA.

On March 16, 2017, BMSMC received comments from the USEPA and the PREQB on the RCRA Corrective Action Program Quarterly Progress Report No. 63, 2nd Quarter 2016.

• On May 15, 2017, BMSMC submitted a Response to Comments to the Technical Review RCRA Corrective Action Program Quarterly Progress Report No. 63 2nd Quarter 2016 to the USEPA.

On May 16, 2017, BMSMC received comments from the USEPA and the PREQB on the RCRA Corrective Action Program Quarterly Progress Report No. 65, 4th Quarter 2016.

• On June 14, 2017, BMSMC submitted a *Response to Comments to the Technical Review RCRA Corrective Action Program Quarterly Progress Report No. 65* 4th *Quarter* 2016 to the USEPA. Revised tables and data validation packages were included in the submittal.

On June 14, 2017, BMSMC submitted *Quarterly Progress Report No. 64* 3rd *Quarter 2016 Revised Tables and Updated Data Validation Packages* to the USEPA. BMSMC had committed to revising Quarterly Progress Reports No. 64, No. 65, and No. 66 based on data validation comments from USEPA on Quarterly Progress Report No. 63.

On June 14, 2017, BMSMC submitted *RCRA Corrective Action Program Quarterly Progress Report No. 66 1st Quarter 2017 Revised Tables and Updated Data Validation Packages to the USEPA.* BMSMC had committed to revising Quarterly Progress Reports No. 64, No. 65, and No. 66 based on data validation comments from USEPA on Quarterly Progress Report No. 63.

On June 27, 2017, BMSMC received comments from the USEPA and PREQB on the *Technical Review April 2017 Corrective Action Program Quarterly Progress Report No.* 66 – 1st Quarter 2017.

On June 30, 2017, BMSMC submitted the March 2017 offsite groundwater laboratory technical reports and data validation packages (Release Assessment Phase 2A wells) to the USEPA.

2.0 Description of Work Completed

A description of corrective action activities completed between April 1, 2017 and June 30, 2017 is presented in this section.

2.1. Site-Wide

2.1.1. Groundwater Elevation Monitoring

Groundwater elevations were collected on May 5, 2017 and May 29, 2017. Groundwater elevations measured on May 5, 2017 were collected as part of the monthly groundwater elevation monitoring at each offsite monitoring well and each onsite perimeter monitoring well. Groundwater elevations measured on May 29, 2017 were collected as part of the 2nd Quarter 2017 groundwater sampling event and included all onsite and offsite monitoring wells.

Results of the groundwater elevation monitoring data collected since July 2016 are provided in **Table 1**.

2.1.2. Release Assessment Phase 1 Program

Results of the 1st Q 2017 groundwater samples collected from monitoring wells installed during the Release Assessment Phase 1 Field Program were validated in accordance with USEPA Region 2 guidelines. Phase 1 Release Assessment monitoring well locations are shown on **Figure 2**. The laboratory analytical results and data validation reports are provided on CD in **Attachment A**. Field data sheets are included on CD in **Attachment B**.

The 2nd Q 2017 groundwater sampling event was conducted in June 2017. This was an expanded groundwater sampling event and included each of the monitoring wells installed during the Phase 1 Release Assessment Field Program (MW-21S, MW-22S, MW-23S, RA-10S, RA-10D,

MW-20D, MW-20S, S-40D, S-40S, S-41D, S-41S, S-42D, S-42S, S-43D, and S-43S). Groundwater samples were analyzed for the following parameters:

- Target compound list (TCL) Volatile Organic Compounds (VOCs) plus
 Tetrahydrofuran, p-Isopropyl Toluene, 1,2,4-Trimethylbenzene, 1,3-Butadiene,
 Benzyl Chloride, tert-Butyl Alcohol, and tert-Amyl Alcohol according to SW-846
 Method 8260C;
- TCL Semivolatile Organic Compounds (SVOCs) plus 1-Methylnaphthalene and 2-Methylnaphthalene, according to SW-846 Method 8270D;
- Naphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3)pyrene, and 1,4-Dioxane according to SW-846 Method 8270D with Selective Ion Monitoring (SIM);
- Low Molecular Weight (LMAs) according to SW-846 Method 8015C by direct aqueous injection (DAI);
- TCL Organochlorine Pesticides according to SW-846 Method 8081B;
- Volatile Petroleum Hydrocarbons (VPH) according to Massachusetts Department of Environmental Protection (MADEP) VPH-Revision 1.1; and
- Extractable Petroleum Hydrocarbons (EPH) according to MADEP EPH Revision 1.1.

Results from the 2nd Q 2017 sampling event will be included in the 3rd Q 2017 Progress Report (October 2017).

2.1.3. Release Assessment Phase 2A Program

Results of the 1st Q 2017 groundwater samples collected from monitoring wells installed during the Release Assessment Phase 2A Field Program were validated in accordance with USEPA Region 2 guidelines. Phase 2A Release Assessment monitoring well locations are shown on **Figure 3**. The laboratory analytical results and data validation reports are provided on CD in **Attachment A**. Field data sheets are included on CD in **Attachment B**.

The 2nd Q 2017 groundwater sampling event was conducted in June 2017. This was an expanded groundwater sampling event and included each of the monitoring wells installed during the Phase 2A Release Assessment Field Program (OSMW-1S, OSMW-1D, OSMW-2S, OSMW-2D, OSMW-3S, OSMW-3D, OSMW-4S, OSMW-4D, OSMW-5S, OSMW-5D, OSMW-6S, and

OSMW-6D). As requested by the USEPA, groundwater samples were analyzed for an expanded list of parameters and included the following:

- TCL VOCs plus Tetrahydrofuran, p-Isopropyl Toluene, 1,2,4-Trimethylbenzene, 1,3-Butadiene, Benzyl Chloride, tert-Butyl Alcohol, and tert-Amyl Alcohol according to SW-846 Method 8260C;
- TCL SVOCs plus 1-Methylnaphthalene and 2-Methylnaphthalene, according to SW-846 Method 8270D;
- Naphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene,
 Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3)pyrene, and
 1,4-Dioxane according to SW-846 Method 8270D with Selective Ion Monitoring (SIM);
- LMAs according to SW-846 Method 8015C by DAI;
- TCL Organochlorine Pesticides according to SW-846 Method 8081B;
- VPH according to MADEP VPH-Revision 1.1; and
- EPH according to MADEP EPH Revision 1.1.

Results from the 2nd Q 2017 sampling event will be included in the 3rd Q 2017 Progress Report (October 2017).

2.1.4. Phase 2C Potential Preferential Pathway Evaluation

Field implementation of the sewer bedding/utility assessment project along and adjacent to State Road No. 3 was conducted in April and May of 2017. In situ groundwater samples were collected from three test pits located adjacent to offsite sewers in the vicinity of the BMSMC facility. The location of the test pits is provided on **Figure 4**.

The in situ groundwater samples were collected in accordance with the *Phase 2C Release Assessment Potential Preferential Pathway Evaluation Sampling and Analysis Plan* (SAP). The samples were analyzed for 1,4-Dioxane. 1,4-Dioxane was selected as a surrogate tracer compound based on (1) review of the Phase 1 and Phase 2A groundwater data which identified 1,4-Dioxane as the one compound which was migrating offsite that was detected in multiple offsite monitoring wells at levels well above tap water RSLs, (2) the high mobility of 1,4-Dioxane in groundwater, and (3) 1,4-Dioxane's rapid attenuation downgradient of the facility southern perimeter boundary suggested the presence of a preferential groundwater flow pathway. The samples were validated according to USEPA Region 2 guidelines. The laboratory analytical

results and data validation reports are provided on CD in **Attachment A**. Field data sheets are included on CD in **Attachment B**.

In addition to the collection of the in situ groundwater samples from the test pits, a sewer infiltration assessment was conducted and six well pairs (OSMW-7S, OSMW-7D, OSMW-8S, OSMW-8D, OSMW-9S, OSMW-9D, OSMW-10S, OSMW-10D, OSMW-11S, OSMW-11D, OSMW-12S, and OSMW-12D) and one piezometer (OSPZ-1) were also installed. The locations of the Phase 2C monitoring wells are shown on **Figure 4**. **Attachment C** presents the soil boring logs and monitoring well construction details. In accordance with the SAP, the Phase 2C assessment will be submitted to the USEPA within 45 days of receipt of the data validation packages.

2.2. Former Tank Farm Area

Results of the 1st Q 2017 groundwater sampling event were validated in accordance with USEPA Region 2 guidelines. Locations of the groundwater monitoring wells are presented on **Figure 5**. The laboratory analytical results and data validation reports are provided on CD in **Attachment A**. Field data sheets are included on CD in **Attachment B**.

The 2nd Q 2017 groundwater sampling was conducted in June 2017. This was an expanded groundwater sampling event and included the FTF Area monitoring wells currently in the groundwater monitoring program (MW-3, MW-5, MW-7, MW-13, MW-14, MW-15, MW-16, MW-17, and MW-18), as well as upgradient monitoring well MW-9, and interior monitoring well MW-19 (installed during the Release Assessment Phase 1 Field Program).³ Groundwater samples were analyzed for the following parameters:

- TCL VOCs plus Tetrahydrofuran, p-Isopropyl Toluene, 1,2,4-Trimethylbenzene, 1,3-Butadiene, Benzyl Chloride, tert-Butyl Alcohol, and tert-Amyl Alcohol according to SW-846 Method 8260C;
- TCL SVOCs plus 1-Methylnaphthalene and 2-Methylnaphthalene, according to SW-846 Method 8270D;
- Naphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3)pyrene, and 1,4-Dioxane according to SW-846 Method 8270D SIM;
- LMAs according to SW-846 Method 8015C by DAI;

³ Monitoring well MW-19 was installed during the Release Assessment Phase 1 Field Program to address USEPA comments on the 2011 CMS to further evaluate the presence of groundwater impacts within the FTF Area.

- VPH according to MADEP VPH-Revision 1.1; and
- EPH according to MADEP EPH Revision 1.1.

Results from the 2nd Q 2017 sampling event will be included in the 3rd Q 2017 Progress Report (October 2017).

2.3. Brule Area

Results of the 1st Q 2017 groundwater sampling event were validated in accordance with USEPA Region 2 guidelines. Locations of the groundwater monitoring wells are presented on **Figure 6**. The laboratory analytical results and data validation reports are provided on CD in **Attachment A**. Field data sheets are included on CD in **Attachment B**.

The 2nd Q 2017 groundwater sampling was conducted in June 2017. This sampling event included the collection of groundwater samples at monitoring wells BR-1, BR-2, and BR-3, as well as monitoring well BR-4 (installed during the Release Assessment Phase 1 Field Program).⁴ Groundwater samples were analyzed for the following parameters:

- TCL VOCs plus Tetrahydrofuran, p-Isopropyl Toluene, 1,2,4-Trimethylbenzene, 1,3-Butadiene, Benzyl Chloride, tert-Butyl Alcohol, and tert-Amyl Alcohol according to SW-846 Method 8260C;
- TCL SVOCs plus 1-Methylnaphthalene and 2-Methylnaphthalene, according to SW-846 Method 8270D;
- Naphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene,
 Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3)pyrene, and
 1,4-Dioxane according to SW-846 Method 8270D SIM;
- LMAs according to SW-846 Method 8015C by DAI;
- VPH according to MADEP VPH-Revision 1.1; and
- EPH according to MADEP EPH Revision 1.1.

Results of the 2^{nd} Q 2017 sampling event will be included in the 3^{rd} Q 2017 Progress Report (October 2017).

⁴ Monitoring well BR-4 was installed during the Release Assessment Phase 1 Field Program to address USEPA comments on the 2011 CMS to further evaluate petroleum hydrocarbon impacts in the Brule Area.

2.4. Building 5 Area

Results of the 1st Q 2017 groundwater sampling event were validated in accordance with USEPA Region 2 guidelines. Locations of the groundwater monitoring wells are presented on **Figure 7.** The laboratory analytical results and data validation reports are provided on CD in **Attachment A.** Field data sheets are included on CD in **Attachment B**.

The 2nd Q 2017 groundwater sampling event was conducted in June 2017. This was an expanded groundwater sampling event and included the Building 5 Area monitoring wells sampled quarterly (UP-1, A-1R4, A-2R2, G-1R3, S-31R2, S-32, and S-33), Building 5 Area monitoring wells sampled semiannually (E-1R, D-1R, S-29R, S-34, S-35, S-36, and UP-2), and Building 5 Area monitoring wells not currently in the groundwater monitoring program (S-28, S-30, S-37, S-38, and MW-11). In addition, monitoring wells S-35D, S-39S, and S-39D installed during the completion of the Release Assessment Phase 1 Field Program were also sampled during the 2nd Q 2017 groundwater sampling event. ⁵ Groundwater samples were analyzed for the following parameters:

- TCL VOCs plus Tetrahydrofuran, p-Isopropyl Toluene, 1,2,4-Trimethylbenzene, 1,3-Butadiene, Benzyl Chloride, tert-Butyl Alcohol, and tert-Amyl Alcohol according to SW-846 Method 8260C;
- TCL SVOCs plus 1-Methylnaphthalene and 2-Methylnaphthalene, according to SW-846 Method 8270D;
- Naphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3)pyrene, and 1,4-Dioxane according to SW-846 Method 8270D SIM;
- LMAs according to SW-846 Method 8015C DAI;
- TCL Organochlorine Pesticides according to SW-846 Method 8081B;
- VPH according to MADEP VPH Revision 1.1; and
- EPH according to MADEP EPH Revision 1.1.

Results of the 2nd Q 2017 sampling event will be included in the 3rd Q 2017 Progress Report (October 2017).

⁵ Monitoring wells S-35D, S-39S, and S-39D were installed during the Release Assessment Phase 1 Field Program to address USEPA comments on the 2011 CMS to further evaluate the presence of groundwater impacts within the Building 5 Area.

3.0 Summary of Findings

This section presents a summary of findings based on groundwater samples collected as part of the 1st Q 2017 groundwater monitoring program. In addition, results of the in-situ groundwater samples collected as part of the Phase 2C Field Program completed during the 2nd Quarter 2017 are discussed in this section.

3.1. Former Tank Farm Area

The 1st Q 2017 groundwater sample results from the FTF Area were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion⁶ and the Maximum Contaminant Levels (MCLs) or the June 2017 USEPA Regional Screening Levels (RSLs) for tap water in cases where MCLs have not been developed.⁷ Groundwater sample results were also compared to the April 2016 Puerto Rico Water Quality Standards (PRWQS). Vapor intrusion screening levels, MCLs, the June 2017 RSLs for tap water, and the April 2016 PRWQS for the FTF Area COCs are provided in the table below.

Parameter		Screening Levels /L)8	Groundwater Screening Levels (ug/L)						
Parameter	Residential	Industrial	MCL	Tap Water	PRWQS				
Acetone	18,000,000	77,000,000		14,000					
MIBK	420,000	1,800,000		6,300					
Chloromethane	230	960		190					
Methylene Chloride	630	7,600	5		46				
Xylenes (Total)	290	1,200	10,000						

Validated groundwater analytical results for samples collected in the FTF Area during the March 2017 groundwater sampling event are presented in **Table 2.** Results are grouped by FTF Area COCs and COPCs, including other VOCs, LMAs, PAHs, VPH, EPH, SVOCs, and Organochlorine Pesticides, where available. USEPA and PRWQS groundwater screening levels are also provided in **Table 2**.

Xylene was the only FTF COC detected above its applicable groundwater concentration for vapor intrusion or groundwater screening levels. Xylene exceeded its residential and industrial

⁶ The USEPA VISL Calculator has not been updated to incorporate the June 2017 RSLs.

⁷ Residential based groundwater concentrations for vapor intrusion are presented for completeness purposes only. In the future, BMSMC plans to establish deed restrictions that limit site-use to industrial purposes and will subsequently manage the site using industrial-based screening levels.

⁸ Groundwater screening levels for vapor intrusion have been adjusted for an average groundwater temperature of 30C.

groundwater concentration for vapor intrusion and its groundwater screening level. VOC COPCs detected above their respective groundwater screening level included 1,4-Dioxane, Dichlorodifluoromethane, Ethylbenzene, Methyl Tert Butyl Ether (MTBE), and tert-Amyl Alcohol. Dichlorodifluoromethane also exceeded its residential groundwater concentration for vapor intrusion. Ethylbenzene also exceeded its residential and industrial groundwater concentration for vapor intrusion. PAH COPCs detected above their respective groundwater screening level included 1-Methylnaphthalene, 2-Methylnaphthalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a)anthracene, Indeno(1,2,3-cd)Pyrene, and Naphthalene. VPH fractions detected above their respective groundwater screening level included C9-C12 Aliphatics and C9-C10 Aromatics. C11-C22 Aromatics was the only EPH fraction detected above its screening level. Other than the PAHs noted above, 4-Chloroaniline was the only SVOC detected above its June 2017 tap water RSL. No LMAs were detected above their respective groundwater screening levels.

3.2. Former Brule Incinerator Area

The 1st Q 2017 groundwater sample results from the Former Brule Incinerator Area were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion and the USEPA MCLs or the June 2017 USEPA RSLs for tap water in cases where MCLs have not been developed. Groundwater sample results were also compared to the April 2016 PRWQS.

Validated groundwater analytical results for samples collected in the Brule Area during the March 2017 groundwater sampling event are presented in **Table 3.** Results are grouped by analyte group (VOCs, LMAs, PAHs, VPH, EPH, and SVOCs). USEPA and PRWQS groundwater screening levels are also provided in **Table 3**.

No COPCs exceeded residential or industrial groundwater concentrations for vapor intrusion. 1,4-Dioxane was the only VOC COPC detected above its groundwater screening level. C9-C10 Aromatics was the only VPH fraction detected above its groundwater screening level. C11-C22 Aromatics was the only EPH fraction detected above its groundwater screening level. 4-Chloroaniline was the only SVOC COPC detected above its groundwater screening level. No LMAs or PAHs were detected above their respective groundwater screening levels.

3.3. Building 5 Area

The 1st Q 2017 groundwater sample results from the Building 5 Area were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion and the USEPA MCLs or the June 2017 USEPA RSLs for tap water in cases where MCLs have not been developed. Groundwater sample results were also compared to the April 2016 PRWQS. Vapor intrusion screening levels, MCLs, the June 2017 RSLs for tap water, and the April 2016 PRWQS for the Building 5 Area COCs are provided in the table below.

Parameter		Screening Levels	Groundwater Screening Levels (ug/L)					
Parameter	Residential	Industrial	MCL	Tap Water	PRWQS			
Benzene	1.3	5.6	5		5			
Ethylbenzene	2.6	12	700		530			
Toluene	15,000	63,000	1,000		1,000			
Xylenes (total)	290	1,200	10,000					
Acetone	18,000,000	77,000,000		14,000				
MIBK	420,000	1,800,000		6,300				
Isopropyl Alcohol	450,000	1,900,000		410				
Methanol	86,000,000	360,000,000		20,000				

Validated groundwater analytical results for samples collected in the Building 5 Area during the March 2017 groundwater sampling event are presented in **Table 4.** Results are grouped by Building 5 Area COCs and COPCs, including other VOCs, LMAs, PAHs, VPH. EPH, SVOCs, and Organochlorine Pesticides. USEPA and PRWQS screening levels are also provided in **Table 4**.

The 1st Q 2017 groundwater sampling results identified the COCs Benzene, Ethylbenzene and Xylenes at concentrations in excess of vapor intrusion screening levels, MCLs or PRWQS. Vapor intrusion screening levels for one or more COCs were exceeded in in-plume wells A-1R4 (Benzene, Ethylbenzene, and Xylene), G-1R3 (Ethylbenzene and Xylene), S-31R2 (Ethylbenzene and Xylene), S-32 (Ethylbenzene and Xylene), and S-39S (Ethylbenzene and Xylene). MCLs/PRWQS for one or more COCs were exceeded in in-plume wells G-1R3 (Ethylbenzene and Xylene), S-31R2 (Ethylbenzene), and S-32 (Ethylbenzene and Xylene). ¹⁰

Methylene Chloride was the only COPC (S-32 only) that exceeded its residential groundwater concentration for vapor intrusion. No COPCs exceeded their industrial groundwater concentration for vapor intrusion. COPC VOCs detected above their respective groundwater screening level included methylene chloride, 1,4-Dioxane, MTBE, and tert-Amyl Alcohol. Naphthalene was the only PAH COPC detected above its groundwater screening level. VPH fractions detected above their respective groundwater screening level included C9-C10 Aromatics and C9-C12 Aliphatics. EPH fractions detected above their respective groundwater screening level included C11-C22 Aromatics and C9-C18 Aliphatics. Other than Naphthalene, no other SVOC COPCs were detected above their respective groundwater screening level. Organochlorine Pesticides detected above their respective groundwater screening level included

⁹ Benzene exceeded only its residential groundwater concentration for vapor intrusion.

¹⁰ Elevated levels of Xylene and Ethylbenzene were also detected at monitoring well S-39S, which is located near Frontera Creek, during several sampling events.

4,4'-DDE, alpha-Chlordane, Dieldrin, gamma-Chlordane, Heptachlor, and Heptachlor Epoxide. No LMAs were detected above their respective groundwater screening levels.

3.4. Release Assessment Phase 1 Program

The 1st Q 2017 groundwater sample results from the Release Assessment Phase 1 monitoring wells were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion and the USEPA MCLs or the June 2017 USEPA RSLs for tap water in cases where MCLs have not been developed. Groundwater sample results were also compared to the April 2016 PRWQS.

Validated groundwater analytical results for samples collected in Release Assessment Phase 1 monitoring wells (MW-21S, MW-22S, MW-23S, RA-10S, RA-10D, MW-20D, MW-20S, S-40D, S-40S, S-41D, S-41S, S-42D, S-42S, S-43D, and S-43S) during the March 2017 groundwater sampling event are presented in **Table 5.** Results are grouped by analyte group (VOCs, LMAs, PAHs, VPH, EPH, SVOCs, and Organochlorine Pesticides). USEPA and PRWQS screening levels are also provided in **Table 5**.

VOC COPCs detected above their respective groundwater screening levels included 1,4-Dioxane, MTBE, and tert-Amyl Alcohol. 1,4-Dioxane was the only COPC that exceeded its residential groundwater concentration for vapor intrusion. C9-C10 Aromatics was the only VPH fraction detected above its groundwater screening level. C11-C22 Aromatics was the only EPH fraction detected above its groundwater screening level. 4,4'-DDT was the only Organochlorine Pesticide detected above its groundwater screening level. No SVOCs or LMAS were detected above their respective groundwater screening levels.

3.5. Release Assessment Phase 2A Program

The 1st Q 2017 groundwater sample results from the Release Assessment Phase 2A monitoring wells were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion and the USEPA MCLs or the June 2017 USEPA RSLs for tap water in cases where MCLs have not been developed. Groundwater sample results were also compared to the April 2016 PRWQS.

Validated groundwater analytical results for samples collected in Release Assessment Phase 2A monitoring during the March 2017 groundwater sampling event are presented in **Table 6.** Results are grouped by analyte group (VOCs, PAHs, VPH, EPH, SVOCs, and Organochlorine Pesticides). USEPA and PRWQS screening levels are also provided in **Table 6**.

1,4-Dioxane was the only VOC COPC detected above its groundwater screening level in samples collected in the Release Assessment Phase 2A monitoring wells. No compound exceeded its

residential and industrial groundwater concentration for vapor intrusion.¹¹ No VPH, EPH, PAHs, SVOCS, or Organochlorine Pesticides were detected above their respective groundwater screening levels.

3.6. Phase 2C Potential Preferential Pathway Evaluation

As part of the sewer bedding/utility assessment, in situ groundwater samples collected from the test pits were analyzed for only 1,4-Dioxane and the results were compared to the USEPA May 2016 residential and industrial groundwater concentrations for vapor intrusion and the June 2017 USEPA RSLs for tap water. No MCL has been developed for 1,4-Dioxane and there are no Puerto Rico Water Quality Standards for this compound.

Validated groundwater analytical results for samples collected during the Phase 2C Potential Preferential Pathway Evaluation conducted in April - May 2017 are presented in **Table 7.** USEPA screening levels are also provided in **Table 7**.

The 1,4-Dioxane concentration in each of the in-situ groundwater samples was less than its residential and industrial groundwater concentration for vapor intrusion and greater than its tap water RSL.

4.0 Summary of Changes Made

The CMS program is currently under evaluation pending final field activities that may require the expansion of the program to other areas or SWMUs within the facility, and the integration of additional wells into the current Facility Groundwater Monitoring Program among other changes.

5.0 Summary of Public Participation Activities

No public meetings were held during the 2nd Quarter of 2017.

6.0 Summary of Problems Encountered

There were no problems encountered relating to the RCRA Corrective Action Program during this reporting period.

¹¹Hexachlorobutadiene was listed as a detected VOC for sample OSMW-3S (FA41752-6) in the raw data section of the laboratory technical report. The listed Hexachlorobutadiene concentration (0.53 ug/l) exceeded its USEPA RSL and Residential Groundwater Concentration for Vapor Intrusion. A review of the laboratory QA/QC samples indicated Hexachlorobutadiene was also detected in the laboratory method blank (0.52 ug/l) associated with OSMW-3S. BMSMC subsequently requested the laboratory to report the Hexachlorobutadiene results for each sample in the FA41752. The reported concentration of Hexachlorobenzene for sample OSMW-3S was 0.53 JB. After data validation the Hexachlorobutadiene result for OSMW-3S was qualified as non-detect.

7.0 Changes in Personnel

There were no changes in personnel during this reporting period.

8.0 Projected Work for Next Reporting Period

Work scheduled to be performed during the three month period from July 1, 2017 through September 2017 is described in this section.

8.1. Site-Wide

The 2nd Q 2017 groundwater results for the Release Assessment Phase 1, Phase 2A, and Phase 2C monitoring wells will be validated.

The *Phase 2B Release Assessment Sampling and Analysis Plan – Frontera Creek* will be submitted to the USEPA during the 3rd Q 2017. It is anticipated field work will begin in 3rd Q / 4th Q 2017 dependent on site access and weather considerations.

Monthly depth to groundwater measurements will be collected in monitoring wells located along State Road No. 3. Results of the monthly depth to groundwater measurements will be presented in the next Quarterly Progress Report.

Monitoring wells installed during the Release Assessment Phase 1 Field Program will be sampled during the 3rd Q 2017 groundwater sampling event. These monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled for in June 2017.

Monitoring wells installed during the Release Assessment Phase 2A Field Program will be sampled during the 3rd Q 2017 groundwater sampling event. These monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled for in June 2017.

Monitoring wells installed during the Release Assessment Phase 2C Field Program will be sampled during the 3rd Q 2017 groundwater sampling event. These monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled for in June 2017.

Activities related to hydrogeologic testing and groundwater treatability studies will continue during the 3^{rd} Q 2017.

Semi-annual indoor air testing will be conducted at Building 30 in July 2017.

BMSMC will submit a Response to Comments to the *Technical Review of the January 6, 2017 On-Site Surface Soil Sampling and Analysis Plan* to the USEPA during the 3rd Q 2017.

BMSMC will submit a Response to Comments to the *Technical Review of the January 17, 2017 Phase 2C Release Assessment Potential Preferential Pathway Evaluation Sampling and Analysis Plan* to the USEPA during the 3rd Q 2017.

BMSMC will submit a Response to Comments to the *Technical Review of the January 13*, 2017 *Release Assessment Investigation Treatability Testing Work Plan* to USEPA during the 3rd Q 2017.

BMSMC will submit a Response to Comments to the *Technical Review of the Responses to Comments on the March 2016 Release Assessment Sampling and Analysis Plan*.

BMSMC will submit a Response to Comments to the *Technical Review April 2017 Corrective Action Program Quarterly Progress Report No.* $66 - 1^{st}$ *Quarter 2017.*

8.2. Former Tank Farm Area

The 2nd Q 2017 groundwater results will be validated.

The 3rd Q 2017 quarterly groundwater sampling event will be conducted in September 2017. Monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled in June 2017.

8.3. Brule Area

The 2nd Q 2017 groundwater results will be validated.

The 3rd Q 2017 quarterly groundwater sampling event will be conducted in September 2017. Monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled in June 2017.

8.4. Building 5 Area

The 2nd Q 2017 groundwater results will be validated.

The 3rd Q 2017 quarterly groundwater sampling event will be conducted in September 2017. Monitoring wells will be sampled for the same expanded list of analytical parameters that were sampled in June 2017.

9.0 Additional Documentation

Additional documentation submitted to the USEPA during the period April 1, 2017 through June 30, 2017 included:

• On June 13, 2017 BMSMC submitted a *Revised Contained-In Determination Request* to the USEPA.

Tables

Table 1
Groundwater Elevation Data - January 2017 Through June 2017

				Measurer	nent Date			
	7/27/2016	8/31/2016	10/17/2016	11/29/2016	1/30/2017	2/27/2017	5/5/2017	5/29/2017
Well ID				roundwater Ele				
			Forn	ner Tank Farm A	rea			
MW-12		15.49		17.76		14.92		15.89
MW-13		15.93		17.75		15.26		15.70
MW-14		14.91		16.87		14.40		14.63
MW-15		14.29		16.36		13.87		14.28
MW-16		16.30		18.69		15.60		15.24
MW-17		14.90		17.11		14.32		14.32
MW-18		14.84		17.09		14.34		14.96
MW-19		14.10		16.26		13.53		14.48
MW-3		15.83		17.52		15.30		15.50
MW-5		15.20		19.31		14.54		14.60
MW-7 MW-9		16.21		18.17	16.02	15.42		15.69
		16.62		17.79	16.83	15.54		15.78
RW-1		15.65		18.28 ner Brule Inciner		14.83		
BR-1		14.16		16.38		13.79		14.02
BR-2		14.08		16.48		13.72		14.34
BR-3		14.17		16.45		13.72		14.54
BR-4		3.65		13.13		13.10		13.58
DIX-4		3.03	L	Building 5 Area		13.10		13.36
A-1R4		14.07		15.61		12.91		13.69
A-2R2		13.72		16.47		12.99		13.35
D-1R		10.68		11.70	11.07	10.44		10.85
E-1R		10.88		12.73		10.45		11.01
G-1R3		13.91		16.32		11.60		11.87
MW-11		11.74		13.27		11.42		11.64
S-28		13.17	14.56	15.48	13.39	12.69	14.63	13.85
S-29R		11.76		14.92		11.26	13.87	12.75
S-30		9.79	10.62	11.46	9.93	9.72	10.59	10.57
S-31R2		11.03		13.67		10.37		11.17
S-32		10.00	11.22	12.75	10.16	9.71		10.08
S-33		9.53	11.06	12.05	9.74	9.42		9.86
S-34		8.81	9.68	10.86	8.92	8.64		9.16
S-35D	11.88	11.38	12.57	13.43	12.07	11.50	12.70	12.70
S-35S	9.40	8.97	9.79	11.11	9.16	8.98	9.69	9.68
S-36		9.81	11.03	14.56	10.01	9.60		10.32
S-37		9.04	9.68	10.57	9.20	8.97		9.27
S-38		13.05		15.23		12.54		13.40
S-39D		12.31	14.34	15.55	12.56	11.85	14.58	14.53
S-39S		12.37	14.36	15.56	12.58	11.87	14.60	14.49
UP-1		13.95		16.19		13.37		13.62
UP-2		13.50		15.98		13.33		13.49
	T	T		se Assessment Pl			T	T
MW-20D		12.77	13.73	14.46	13.06	12.68	13.74	13.65
MW-20S		12.78	13.79	14.52	13.07	12.75	13.75	13.53
MW-21S		15.63		18.25	15.68	14.60		15.77
MW-22S		15.92		18.03	15.88	15.16		16.58
MW-23S		14.02		15.91	11.51	13.68		13.74
RA-10D RA-10S		13.58 13.62		15.88 15.92		13.04 13.08		13.38 14.10
S-40D		10.76	11.57	12.80	11.10	10.61	 11.91	11.86
S-40S		9.81	11.37	14.04	10.17	9.66	11.91	11.58
S-40S S-41D	10.78	10.65	11.39	12.24	10.17	10.47	11.48	11.31
S-41D S-41S	8.46	8.11	8.68	9.89	8.20	8.08	8.62	8.60
S-415 S-42D	10.59	10.27	11.02	11.59	10.47	10.19	11.03	10.87
S-42S	10.39		10.88	11.45	10.47	10.19 NA	NA	NA
S-425 S-43D	12.52	12.22	13.30	14.11	12.64	12.18	13.45	13.27
S-43S	12.32	12.22	13.15	13.92	12.64	12.18	13.45	12.98
J 7JJ	12.30	12.03	13.13	13.32	14.43	12.04	13.34	12.30

Table 1
Groundwater Elevation Data - January 2017 Through June 2017

				Measuren	nent Date			
	7/27/2016	8/31/2016	10/17/2016	11/29/2016	1/30/2017	2/27/2017	5/5/2017	5/29/2017
Well ID			G	roundwater Elev	vation (Feet MS	L)		
			Release	Assessment Pho	ase 2A			
OSMW-1D	11.62		12.15	13.08	11.79	11.36	12.31	12.12
OSMW-1S	11.13		11.82	12.51	11.20	10.74	11.66	11.58
OSMW-2D	10.87			12.74	11.30	10.77	12.05	11.73
OSMW-2S	10.78			12.54	11.19	10.52	11.92	11.67
OSMW-3D	11.24			13.06	11.64	10.89	12.35	11.99
OSMW-3S	11.06			12.63	11.29	10.48	12.09	11.23
OSMW-4D	8.52			9.83	8.74	8.21	9.43	9.37
OSMW-4S	8.26			9.34	8.32	7.90	9.02	8.99
OSMW-5D	9.07			10.25	9.39	10.69	9.58	9.72
OSMW-5S	8.61			9.80	8.84	8.17	8.63	8.73
OSMW-6D	6.91			7.87	7.07	6.52	7.14	7.12
OSMW-6S	6.49			7.63	6.67	6.16	7.23	7.06
OSMW-7D ¹							12.97	12.95
OSMW-7S ¹							12.59	12.16
OSMW-8D ¹							12.38	11.97
OSMW-8S ¹							11.60	11.53
OSMW-9D ¹			-			-	10.87	10.08
OSMW-9S ¹			-			-	10.03	9.62
OSMW-10D ¹			-			-	12.77	12.28
OSMW-10S ¹	-		-			-	12.55	12.14
OSMW-11S ¹							9.58	8.71
OSMW-12D ¹							8.95	8.44
OSMW-12S ¹							9.05	8.56
OSPZ-1 ¹	-		-			-	12.83	12.79

Notes:

⁻⁻⁻ Well is not included in the monthly groundwater elevation monitoring.

NA - Not Accessible. Well was not accessible during groundwater elevation monitoring.

¹ These wells/piezometer were installed as part of the Phase 2C Field Program completed during the 2nd Quarter 2017.

	1	1			1		1		ı	1	1		1		1	1
	USEPA	USEPA														
	Residential	Industrial														
	Groundwater	Groundwater	USEPA													
	Concentration for	Concentration for		April 2016	MW-3	MW-5	MW-7	MW-9	MW-13	MW-14	MW-14 DUP	MW-15	MW-16	MW-17	MW-18	MW-19
Parameter	Vapor Intrusion	Vapor Intrusion	Tap Water RSL	PRWQS ¹	3/14/2017	3/14/2017	3/14/2017	3/20/2017	3/13/2017	3/13/2017	3/13/2017	3/13/2017	3/13/2017	3/14/2017	3/14/2017	3/20/2017
	•					FTF Area	COC Results (ug	g/L)		•					•	•
Acetone	18000000	77000000	14000		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<250
Chloromethane	230	960	190		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
Methyl Isobutyl Ketone (MIBK)	420000	1800000	6300		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
Methylene Chloride	630	7600	5	46	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
Xylene (total)	290	1200	10000	10000	1.57 J	5.77	3.04	<2	<2	<2	<2	<2	<2	91.49	0.83 J	1226.4
4 4 4 Taiable and the and	C000	25000	200	200				ytical Results (ug		-1		-4		-1		<10
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	6000 2.4	11	200 0.076	200 1.7	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<10
1,1,2-Trichloroethane	4	18	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,1-Dichloroethane	6.2	27	2.8		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,1-Dichloroethylene	160	690	7	7	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,2,3-Trichlorobenzene			7		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
1,2,4-Trichlorobenzene	25	110	70	35	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
1,2,4-Trimethylbenzene	21	89	56	-	0.57 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,2-Dibromo-3-chloropropane	0.02	0.24	0.2		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<50
1,2-Dibromoethane	0.13	0.58	0.05	0.052	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
1,2-Dichlorobenzene	1900	8100	600	420	0.32 J	0.43 J	8.4	<1	<1	<1	<1	<1	6.9	<1	1.2	<10
1,2-Dichloroethane	1.8	7.8	5	3.8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,2-Dichloropropane	1.9	8.4	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
1,3-Butadiene	0.027	0.12	0.018		<2 J	<2 J	<2 J	<2	<2 J	<2 J	<2 J	<2 J	<2 J	<2 J	<2 J	<20
1,3-Dichlorobenzene				320	<1	<1	0.35 J	<1	<1	<1	<1	<1	0.25 J	<1	<1	<10
1,4-Dichlorobenzene	1.9	8.3	75	63	<1	<1	1.3	<1	<1	<1	<1	<1	1.5	<1	0.4 J	<10
1,4-Dioxane	2200 1800000	9600 7500000	0.46 5600		0.26 J <5	0.55 <5	1.3 <5	<0.29 <5	<0.29 <5	1.7 <5	1.5 <5	5.7 <5	0.38	1.6 <5	1.7 <5	0.86 <50
2-Butanone (MEK)	6200	26000	38		<10	<10	<10	<10	<10	<10	<10	<10	<5 <10	<10	<10	<100
2-Hexanone Benzene	1.3	5.6	38 5	5	0.35 J	0.6 J	<10	<10	<10	<10	<10	<10	<10	<10	<10	<100
Benzyl Chloride	2.5	11	0.089		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
Bromochloromethane	560	2400	83		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Bromodichloromethane	0.69	3	0.13	5.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Bromoform	85	370	3.3	43	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Carbon Disulfide	1000	4300	810		1.3 J	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
Carbon Tetrachloride	0.34	1.5	5	2.3	<1	<1	<1	<1 J	<1	<1	<1	<1	<1	<1	<1	<10 J
Chlorobenzene	310	1300	100	100	0.49 J	0.26 J	1.4	<1	<1	<1	<1	<1	<1	<1	0.77 J	<10
Chloroethane	20000	82000	21000		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
Chloroform	0.66	2.9	8	57	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
cis-1,2-Dichloroethylene			70	70	<1	<1	1.2	<1	<1	<1	<1	<1	<1	<1	<1	<10
cis-1,3-Dichloropropene ²			0.47	3.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Cyclohexane	820	3500	13000		3.9	<1	<1	<1	<1	<1	<1	0.65 J	<1	<1	2.7	<10
Dibromochloromethane			0.87	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Dichlorodifluoromethane	6	25	200		<2	<2	8.5	<2	2.6	<2	0.69 J	<2	0.56 J	<2	<2	<20
Ethylbenzene	2.6 1200	12 5100	700 55000	530	0.43 J	<1	1.1	<1	<1	<1	<1	<1	<1	6	<1	646
Freon 113 Hexachlorobutadiene	0.21	0.93	0.14	4.4	<1 <4.9	<1 <4.9	<1 <4.9	<1 <4.9	<1 <5	<1 <4.9	<1 <4.9	<1 <4.9	9.4 <4.8	<1 <4.8	<1 <4.9	<10 <5
Isopropylbenzene	630	2600	450	4.4	17.9	11.4	<1	<4.9 <1	<1	<4.9 <1	<1	28	<4.8	10.6	12.5	6.6 J
Methyl Acetate			20000		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<200
Methyl Bromide	15	63	7.5		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<20
Methyl Tert Butyl Ether	370	1600	14	14	<1	7.3	0.41 J	<1	<1	<1	<1	21	<1	<1	0.55 J	<10
Methylcyclohexane					3.8	<1	<1	<1	<1	<1	<1	0.49 J	<1	<1	5.5	<10
p-Isopropyl Toluene					<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Styrene	7000	29000	100		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
tert-Amyl Alcohol	4100	17000	6.3	-	<20	10.3 J	<20	<20	<20	<20	<20	<20	<20	<20	<20	<200
tert-Butyl Alcohol			-	1400	<20	364	<20	<20	<20 J	<20 J	<20 J	435 J	<20 J	<20	<20	<200
Tetrachloroethylene	12	50	5	5	<1	<1	<1	<1 J	<1	<1	<1	<1	<1	<1	<1	<10 J
Tetrahydrofuran	590000	2500000	3400	1000	<5	<5	<5	<5	<5	<5	<5	5.1	<5	<5	<5	<50
Toluene	15000	63000	1000 100	1000 100	0.54 J	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 J	<10
trans-1,2-Dichloroethylene					<1											<10
trans-1,3-Dichloropropene ²			0.47	3.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<10
Trichloroethylene Trichloroethylene	0.94	5.9	5 5200	5	<1 <2	<1	0.75 J <2	<1 <2	<1 <2	<1 <2	<1	<1 <2	<1 <2	<1 <2	<1	<10 <20
Trichlorofluoromethane Vinyl Chloride	0.13	2.1	2	0.25	<1	<2 <1	<1	<1	<1	<1	<2 <1	<1	<1	<1	<2 <1	<10
vary, emonde	0.13	2.1		0.23				ical Results (ug/			, · ·	-1	1 1		,1	110
Ethanol				10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
Isobutyl Alcohol			5900		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
· · · ·	•	•														

		ı			1	1	1	ı	1	1		1	ı	1	1	
	USEPA	USEPA														
	Residential	Industrial														
	Groundwater	Groundwater	USEPA													
	Concentration for	Concentration for	MCL or June 2017	April 2016	MW-3	MW-5	MW-7	MW-9	MW-13	MW-14	MW-14 DUP	MW-15	MW-16	MW-17	MW-18	MW-19
Parameter	Vapor Intrusion	Vapor Intrusion	Tap Water RSL	PRWQS ¹	3/14/2017	3/14/2017	3/14/2017	3/20/2017	3/13/2017	3/13/2017	3/13/2017	3/13/2017	3/13/2017	3/14/2017	3/14/2017	3/20/2017
Isopropyl Alcohol Methanol	450000 86000000	1900000 360000000	410 20000		<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200	<100 <200
n-Butvl Alcohol	8600000	36000000	2000		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
n-Propyl Alcohol			2000		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
sec-Butyl Alcohol	58000000		24000		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
,					Polycycli		ocarbons Analy	tical Results (ug	/L)	•				•		
1-Methylnaphthalene			1.1		61.3	<0.98	<0.98	<0.98	<5	<4.9	<4.9	<4.9	<4.8	<0.96	10.4	1.1
2-Methylnaphthalene			36		56.8	<0.98	<0.98	<0.98	<5	<4.9	<4.9	<4.9	<4.8	<0.96	0.62 J	0.84 J
Acenaphthene			530	670	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Acenaphthylene Anthracene			1800	8300	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<5 <5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<5 <5
Benzo(a)anthracene			0.03	0.038	<0.2	0.049 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	0.4
Benzo(a)pyrene			0.2	0.038	<0.2	0.046 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	<0.2
Benzo(b)fluoranthene			0.25	0.038	<0.2	0.044 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	<0.2
Benzo(g,h,i)perylene				210	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Benzo(k)fluoranthene			2.5	0.038	<0.2	0.046 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	<0.2
Chrysene			25	0.038	<0.2	0.041 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	<0.2
Dibenz(a,h)anthracene			0.025	0.038	<0.2	0.04 J	<0.2	<0.2	<5	<4.9	<4.9	<4.9	<4.8	<0.19	<0.2	<0.2
Fluoranthene Fluorene			800 290	130 1100	<4.9 1.5 J	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<5 <5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 1.6 J	3.3 J <5
Indeno(1,2,3-cd)pyrene			0.25	0.038	<0.2	<4.9 0.059 J	<4.9 <0.2	<0.2	<5 <5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.8	<0.2	<0.2
Naphthalene	3.2	14	0.17	0.17	3.1	<0.98	<0.98	<0.98	<5	<4.9	<4.9	<4.9	<4.8	<0.96	0.55 J	1.2
Phenanthrene				18	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Pyrene			120	830	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	2.6 J
								tical Results (ug								
C5-C8 Aliphatics (Unadj.)			1300		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100	<100
C9-C10 Aromatics (Unadj.)			5.5		304	<100	<100 <100	<100 <100	<100	<100	<100	45.9 J	<100	71.2 J	177	<100
C9-C12 Aliphatics (Unadj.)			100		98.1 J	<100		<100 lytical Results (ເ	<100	<100	<100	<100	<100	138 J	70.8 J	2550
C11-C22 Aromatics (Unadj.)			5.5		421	81.2 J	<200	<200	(200	<190	<200	118 J	<200	127 J	<200	<200 J
C19-C36 Aliphatics			60000		<200	<190	<200	<200	<10000	<10000	<10000	<10000	<10000	<190	<200	<200
C9-C18 Aliphatics			100		<200	<190	<200	<200	<10000	<10000	<10000	<10000	<10000	<190	53.4 J	<200
						atile Organic Co		tical Results (ug	/L)							
1,1'-Biphenyl	23	95	0.83		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
1,2,4,5-Tetrachlorobenzene			1.7		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol			240 1200		<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<5 J <5	<4.9 J <4.9	<4.9 J <4.9	<4.9 J <4.9	<4.8 J <4.8	<4.8 <4.8	<4.9 <4.9	<5 <5
2,4,6-Trichlorophenol			4.1	14	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2,4-Dichlorophenol			46	77	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2,4-Dimethylphenol			360	380	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	7.6
2,4-Dinitrophenol			39	69	<25	<25	<25	<25	<25 J	<25 J	<25 J	<25 J	<24 J	<24	<25	<25
2,4-Dinitrotoluene			0.24	1.1	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2,6-Dinitrotoluene			0.049		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2-Chloronaphthalene			750	1000	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
2-Chlorophenol			91 930	81	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<5 <5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<5 <5
2-Methylphenol 2-Nitroaniline			190		<4.9	<4.9	<4.9	<4.9	<5 J	<4.9 J	<4.9 J	<4.9 J	<4.8 J	<4.8	<4.9	<5
2-Nitrophenol					<4.9	<4.9	<4.9	<4.9	<5 J	<4.9 J	<4.9 J	<4.9 J	<4.8 J	<4.8	<4.9	<5
3&4-Methylphenol ³			930		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
3,3'-Dichlorobenzidine			0.13	0.21	<4.9 J	<4.9 J	<4.9 J	<4.9 J	<5	<4.9	<4.9	<4.9	<4.8	<4.8 J	<4.9 J	<5 J
3-Nitroaniline					<4.9 J	<4.9 J	<4.9 J	<4.9 J	<5	<4.9	<4.9	<4.9	<4.8	<4.8 J	<4.9 J	<5 J
4,6-Dinitro-2-Methylphenol			1.5	13	<9.8	<9.8	<9.8	<9.8	<10 J	<9.8 J	<9.8 J	<9.8 J	<9.6 J	<9.6	<9.8	<9.9
4-Bromophenyl Phenyl Ether					<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
4-Chloro-3-Methylphenol			1400		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
4-Chlorophonyl Phonyl Ethor			0.37		<4.9 J	<4.9 J	<4.9 J	<4.9 J	0.93 J	0.86 J	0.85 J	2.4 J	<4.8	<4.8 J	<4.9 J	<5 J
4-Chlorophenyl Phenyl Ether 4-Nitroaniline			3.8		<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<5 <5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<5 <5
4-Nitroaniline 4-Nitrophenol			3.8		<25	<25	<25	<25	<25	<25	<25	<25	<4.8	<4.8	<25	<25
Acetophenone			1900		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	3.1 J
Atrazine			3		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Benzaldehyde			19		<25	<25	<25	<25	<25	<25	<25	<25	<24	<24	<25	<25
Bis(2-chloroethoxy)methane			59		<4.9	<4.9	<4.9	<4.9	<5 J	<4.9 J	<4.9 J	<4.9 J	<4.8 J	<4.8	<4.9	<5
Bis(2-chloroethyl)ether	8.4	37	0.014	0.3	<4.9	<4.9	<4.9	<4.9	<5	<4.9 <4.9	<4.9 <4.9	<4.9 <4.9	<4.8	<4.8 <4.8	<4.9	<5 <5
bis(2-Chloroisopropyl)ether			710	1400	<4.9	<4.9	<4.9	<4.9	<5				<4.8		<4.9	

Table 2 Former Tank Farm Area Groundwater Analytical Results - March 2017

Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	MW-3 3/14/2017	MW-5 3/14/2017	MW-7 3/14/2017	MW-9 3/20/2017	MW-13 3/13/2017	MW-14 3/13/2017	MW-14 DUP 3/13/2017	MW-15 3/13/2017	MW-16 3/13/2017	MW-17 3/14/2017	MW-18 3/14/2017	MW-19 3/20/2017
Bis(2-ethylhexyl)phthalate			6	12	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Butyl Benzyl Phthalate			16	1500	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Caprolactam			9900		<9.8	<9.8	<9.8	<9.8	<10	<9.8	<9.8	<9.8	<9.6	<9.6	<9.8	<9.9
Carbazole					<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Dibenzofuran			7.9		<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Diethyl Phthalate			15000	17000	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Dimethyl Phthalate				270000	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Di-n-butyl Phthalate			900	2000	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Di-n-octyl Phthalate			200	-	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Hexachlorobenzene	0.058	0.25	1	0.0028	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Hexachlorocyclopentadiene	0.042	0.18	50	40	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Hexachloroethane	1.1	4.8	0.33	14	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Isophorone			78	350	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Nitrobenzene	50	220	0.14	17	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
N-Nitrosodi-n-propylamine			0.011	0.05	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
N-Nitrosodiphenylamine			12	1	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5
Pentachlorophenol			1	1	<25	<25	<25	<25	<25	<25	<25	<25	<24	<24	<25	<25
Phenol			5800	10000	<4.9	<4.9	<4.9	<4.9	<5	<4.9	<4.9	<4.9	<4.8	<4.8	<4.9	<5

Notes:

¹ April 2016 Puerto Rico Water Quality Standards Regulation for Class SG groundwater

² USEPA screening level and PRWQS are for 1,3-Dichloropropene. The USEPA and PREQB have not specifically established screening levels for cis-1,3-Dichloropropene or trans-1,3-Dichloropropene.

3 The Tapwater screening level applied to 3&4-Methylphenol is the screening level for 3-Methylphenol. This is a conservative level; it is lower than the screening level for 4-Methylphenol.

--- USEPA and/or PREQB have not developed a screening level for this compound.

Detected values are shown in bold.

Values which exceed a Drinking Water Quality Standard (USEPA MCL, USEPA Tapwater RSL, PRWQS) and/or a USEPA Groundwater Concentration for Vapor Intrusion are shown highlighted yellow.

Sample results with elevated reporting limits, due to sample dilution from the presence of other target compounds, that are above USEPA and PREQB groundwater action levels are shaded gray.

Table 3
Former Brule Incinerator Area Groundwater Analytical Results - March 2017

		1	1		1		I	1	1
Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS¹	BR-1 3/10/2017	BR-1 DUP 3/10/2017	BR-2 3/10/2017	BR-3 3/13/2017	BR-4 3/10/2017
			Volatile Organic Com	pounds Analytical R	esults (ug/L)				
1,1,1-Trichloroethane	6000	25000	200	200	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	2.4	11	0.076	1.7	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	4	18	5	5	<1	<1	<1	<1	<1
1,1-Dichloroethane	6.2	27	2.8		<1	<1	<1	<1	<1
1,1-Dichloroethylene	160	690	7	7	<1	<1	<1	<1	<1
1,2,3-Trichlorobenzene			7		<2	<2	<2	<2	<2
1,2,4-Trichlorobenzene	25	110	70	35	<2	<2	<2	<2	<2
1,2,4-Trimethylbenzene	21	89	56 0.2		<1 <5	<1	<1	<1	<1 <5
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.02 0.13	0.24 0.58	0.2	0.052	<2	<5 <2	<5 <2	<5 <2	<2
1,2-Dibromoethane	1900	8100	600	420	0.98 J	1	0.5 J	<1	<1
1,2-Dichloroethane	1.8	7.8	5	3.8	<1	<1	<1	<1	<1
1,2-Dichloropropane	1.9	8.4	5	5	<1	<1	<1	<1	<1
1,3-Butadiene	0.027	0.12	0.018		<2 J	<2 J	<2 J	<2 J	<2 J
1,3-Dichlorobenzene				320	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	1.9	8.3	75	63	0.58 J	0.58 J	<1	<1	<1
1,4-Dioxane	2200	9600	0.46		161	155	7.6	37.6	0.54
2-Butanone (MEK)	1800000	7500000	5600		<5	<5	<5	<5	<5
2-Hexanone	6200	26000	38		<10	<10	<10	<10	<10
Acetone	18000000	77000000	14000		<25	<25	<25	<25	<25
Benzene	1.3	5.6	5	5	<1	<1	<1	<1	<1
Benzyl Chloride	2.5	11	0.089		<2	<2	<2	<2	<2
Bromochloromethane	560	2400	83		<1	<1	<1	<1	<1
Bromodichloromethane	0.69	3	0.13	5.5	<1	<1	<1	<1	<1
Bromoform	85	370	3.3	43	<1	<1	<1	<1	<1
Carbon Disulfide	1000	4300	810		<2	<2	<2	<2	<2
Carbon Tetrachloride	0.34	1.5	5	2.3	<1	<1	<1	<1	<1
Chlorobenzene	310	1300	100	100	1.2	1.2	0.26 J	0.34 J	<1
Chloroethane Chloroform	20000	82000 2.9	21000 8	 57	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1
Chloromethane	230	960	190		<2	<2	<2	<2	<2
cis-1,2-Dichloroethylene	230	960	70	70	<1	<1	<1	<1	<1
cis-1,2-Dichloropenpene ²			_				t		t
Cyclohexane	820	3500	0.47 13000	3.4	<1 3.3	<1 4	<1 <1	<1 <1	<1 <1
Dibromochloromethane	820	3500	0.87	4	3.3 <1	4 <1	<1	<1	<1
Dibromochioromethane Dichlorodifluoromethane	6	25	200		<2	<1 <2 J	<2	<2	<2
Ethylbenzene	2.6	12	700	530	<1	<1	<1	<1	<1
Freon 113	1200	5100	55000		<1	<1	<1	<1	<1
Hexachlorobutadiene	0.21	0.93	0.14	4.4	<5	<4.8	<5	<4.9	<4.9
Isopropylbenzene	630	2600	450		2.4	2.9	4.6	1	<1
							1		

Table 3
Former Brule Incinerator Area Groundwater Analytical Results - March 2017

	1	1	Т			T	T	T	
Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	BR-1 3/10/2017	BR-1 DUP 3/10/2017	BR-2 3/10/2017	BR-3 3/13/2017	BR-4 3/10/2017
Methyl Acetate			20000		<20	<20	<20	<20	<20
Methyl Bromide	15	63	7.5		<2	<2	<2	<2	<2
Methyl Isobutyl Ketone (MIBK)	420000	1800000	6300		<5	<5	<5	<5	<5
Methyl Tert Butyl Ether	370	1600	14	14	10.3	11	2.6	1	<1
Methylcyclohexane					<1	<1	<1	<1	<1
Methylene Chloride	630	7600	5	46	<5	<5	<5	<5	<5
p-Isopropyl Toluene					<1	<1	<1	<1	<1
Styrene	7000	29000	100		<1	<1	<1	<1	<1
tert-Amyl Alcohol	4100	17000	6.3		<20	<20	<20	<20	<20
tert-Butyl Alcohol				1400	140	109 J	11.7 J	<20 J	<20
	12	50	5	5	<1	<1	<1	<1	<1
Tetrahydrofuran	590000	2500000	3400		<5	<5	<5	<5	<5
Toluene	15000	63000	1000	1000	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene			100	100	<1	<1	<1	<1	<1
trans-1,3-Dichloropropene ²			0.47	3.4	<1	<1	<1	<1	<1
Trichloroethylene	0.94	5.9	5	5	<1	<1	<1	<1	<1
Trichlorofluoromethane			5200		<2	<2	<2	<2	<2
Vinyl Chloride	0.13	2.1	2	0.25	<1	<1	<1	<1	<1
Xylene (total)	290	1200	10000	10000	<2	<2	<2	<2	<2
		Lo	ow Molecular Weight	Alcohols Analytical	Results (ug/L)				
Ethanol				10000	<100	<100	<100	<100	<100
Isobutyl Alcohol			5900		<100	<100	<100	<100	<100
Isopropyl Alcohol	450000	1900000	410		<100	<100	<100	<100	<100
Methanol	86000000	360000000	20000		<200	<200	<200	<200	<200
n-Butyl Alcohol			2000		<100	<100	<100	<100	<100
n-Propyl Alcohol					<100	<100	<100	<100	<100
sec-Butyl Alcohol	58000000		24000		<100	<100	<100	<100	<100
	1	Poi	lycyclic Aromatic Hyd	•	1	1	ı	1	
1-Methylnaphthalene			1.1		<1	<0.95	<5	<4.9	<0.97
2-Methylnaphthalene			36		<1	<0.95	<5	<4.9 J	<0.97
Acenaphthene			530	670	<5	<4.8	<5	<4.9	<4.9
Acenaphthylene					<5 -	<4.8	<5	<4.9	<4.9
Anthracene			1800	8300	<5	<4.8	<5 -	<4.9	<4.9
Benzo(a)anthracene			0.03	0.038	<5	<4.8	<5	<4.9	<4.9
Benzo(a)pyrene			0.2	0.038	<5 .5	<4.8	<5	<4.9	<4.9
Benzo(b)fluoranthene			0.25	0.038	<5	<4.8	<5	<4.9	<4.9
Benzo(g,h,i)perylene				210	<5 <5	<4.8	<5 <5	<4.9	<4.9
Benzo(k)fluoranthene			2.5 25	0.038 0.038	<5 <5	<4.8 <4.8	<5 <5	<4.9 <4.9	<4.9 <4.9
Chrysene Dibenz(a,h)anthracene			0.025	0.038	<5 <5	<4.8 <4.8	<5 <5	<4.9 <4.9	<4.9 <4.9
Fluoranthene			800	130	<5 <5	<4.8 <4.8	0.73 J	<4.9 <4.9	<4.9 <4.9
i idoi andiene			800	130		\4.0	0.733	\4. 3	\4. 3

Table 3
Former Brule Incinerator Area Groundwater Analytical Results - March 2017

	1	T				T	T	1	1
Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	BR-1 3/10/2017	BR-1 DUP 3/10/2017	BR-2 3/10/2017	BR-3 3/13/2017	BR-4 3/10/2017
Fluorene			290	1100	<5	<4.8	<5	<4.9	<4.9
Indeno(1,2,3-cd)pyrene			0.25	0.038	<5	<4.8	<5	<4.9	<4.9
Naphthalene	3.2	14	0.17	0.17	<1	<0.95	<5	<4.9	<0.97
Phenanthrene				18	<5	<4.8	<5	<4.9	<4.9
Pyrene			120	830	<5	<4.8	<5	<4.9	<4.9
7, 5.1.5			latile Petroleum Hydi		1				
C5-C8 Aliphatics (Unadj.)			1300		<100	<100	<100 J	<100	<100
C9-C10 Aromatics (Unadj.)			5.5		<100	<100	43.3 J	<100	<100
C9-C12 Aliphatics (Unadj.)			100		<100	<100	<100 J	<100	<100
	•	Extr	actable Petroleum Hy	drocarbons Analytic	al Results (ug/L)		•	•	•
C11-C22 Aromatics (Unadj.)			5.5		174 J	167 J	110 J	<200	114 J
C19-C36 Aliphatics			60000		<190	<200	<10000	<10000	<200
C9-C18 Aliphatics			100		<190	<200	<10000	<10000	<200
		Se	mivolatile Organic Co	ompounds Analytical	Results (ug/L)				
1,1'-Biphenyl	23	95	0.83		<5	<4.8	<5	<4.9	<4.9
1,2,4,5-Tetrachlorobenzene			1.7		<5	<4.8	<5	<4.9	<4.9
2,3,4,6-Tetrachlorophenol			240		<5	<4.8	<5	<4.9 J	<4.9
2,4,5-Trichlorophenol			1200		<5	<4.8	<5	<4.9	<4.9
2,4,6-Trichlorophenol			4.1	14	<5	<4.8	<5	<4.9	<4.9
2,4-Dichlorophenol			46	77	<5	<4.8	<5	<4.9	<4.9
2,4-Dimethylphenol			360	380	<5	<4.8	<5	<4.9	<4.9
2,4-Dinitrophenol			39	69	<25	<24	<25	<25 J	<24
2,4-Dinitrotoluene			0.24	1.1	<5	<4.8	<5	<4.9	<4.9
2,6-Dinitrotoluene			0.049		<5	<4.8	<5	<4.9	<4.9
2-Chloronaphthalene			750	1000	<5	<4.8	<5	<4.9	<4.9
2-Chlorophenol			91	81	<5	<4.8	<5	<4.9	<4.9
2-Methylphenol			930		<5	<4.8	<5	<4.9	<4.9
2-Nitroaniline			190		<5	<4.8	<5	<4.9 J	<4.9
2-Nitrophenol					<5	<4.8	<5	<4.9 J	<4.9
3&4-Methylphenol ³			930		<5	<4.8	<5	<4.9	<4.9
3,3'-Dichlorobenzidine			0.13	0.21	<5	<4.8	<5	<4.9	<4.9
3-Nitroaniline					<5 J	<4.8 J	<5	<4.9	<4.9 J
4,6-Dinitro-2-Methylphenol			1.5	13	<10	<9.5	<10	<9.8 J	<9.7
4-Bromophenyl Phenyl Ether			1400		<5	<4.8	<5	<4.9	<4.9
4-Chloro-3-Methylphenol			1400		<5	<4.8	<5	<4.9	<4.9
4-Chloroaniline			0.37		3 J <5	2.7 J <4.8	<5 <5	1.1 J	<4.9 <4.9
4-Chlorophenyl Phenyl Ether			3.8					<4.9 <4.9	<4.9 <4.9
4-Nitroaniline 4-Nitrophenol			3.8		<5 <25	<4.8 <24	<5 <25	<4.9 <25	<4.9 <24
Acetophenone			1900		<5	<4.8	<5	<4.9	<24 <4.9
Atrazine			3		<5 <5	<4.8 <4.8	<5 <5	<4.9 <4.9	<4.9 <4.9
Attazilie			э		\	\4.0	\)	\4. 3	\4. 3

Table 3
Former Brule Incinerator Area Groundwater Analytical Results - March 2017

Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	BR-1 3/10/2017	BR-1 DUP 3/10/2017	BR-2 3/10/2017	BR-3 3/13/2017	BR-4 3/10/2017
Benzaldehyde			19		<25	<24	<25	<25	<24
Bis(2-chloroethoxy)methane			59		<5 J	<4.8 J	<5	<4.9 J	<4.9 J
Bis(2-chloroethyl)ether	8.4	37	0.014	0.3	<5	<4.8	<5	<4.9	<4.9
bis(2-Chloroisopropyl)ether			710	1400	<5	<4.8	<5	<4.9	<4.9
Bis(2-ethylhexyl)phthalate			6	12	<5	<4.8	<5	<4.9	<4.9
Butyl Benzyl Phthalate			16	1500	<5	<4.8	<5	<4.9	<4.9
Caprolactam			9900		<10	<9.5	<10	<9.8	<9.7
Carbazole					<5	<4.8	<5	<4.9	<4.9
Dibenzofuran			7.9		<5	<4.8	<5	<4.9	<4.9
Diethyl Phthalate			15000	17000	<5	<4.8	<5	<4.9	<4.9
Dimethyl Phthalate				270000	<5	<4.8	<5	<4.9	<4.9
Di-n-butyl Phthalate			900	2000	<5	<4.8	<5	<4.9	<4.9
Di-n-octyl Phthalate			200		<5	<4.8	<5	<4.9	<4.9
Hexachlorobenzene	0.058	0.25	1	0.0028	<5	<4.8	<5	<4.9	<4.9
Hexachlorocyclopentadiene	0.042	0.18	50	40	<5	<4.8	<5	<4.9	<4.9
Hexachloroethane	1.1	4.8	0.33	14	<5	<4.8	<5	<4.9	<4.9
Isophorone			78	350	<5	<4.8	<5	<4.9	<4.9
Nitrobenzene	50	220	0.14	17	<5	<4.8	<5	<4.9	<4.9
N-Nitrosodi-n-propylamine			0.011	0.05	<5	<4.8	<5	<4.9	<4.9
N-Nitrosodiphenylamine			12		<5	<4.8	<5	<4.9	<4.9
Pentachlorophenol			1	1	<25	<24	<25	<25	<24
Phenol			5800	10000	<5 J	<4.8 J	<5	<4.9	<4.9 J

Notes:

Detected values are shown in bold.

Values which exceed a Drinking Water Quality Standard (USEPA MCL, USEPA Tapwater RSL, PRWQS) and/or a USEPA Groundwater Concentration for Vapor Intrusion are shown highlighted yellow. Sample results with elevated reporting limits, due to sample dilution from the presence of other target compounds, that are above USEPA and PREQB groundwater action levels are shaded gray.

J - Indicates an estimated value.

¹ April 2016 Puerto Rico Water Quality Standards Regulation for Class SG groundwater.

² USEPA screening level and PRWQS are for 1,3-Dichloropropene. The USEPA and PREQB have not specifically established screening levels for cis-1,3-Dichloropropene or trans-1,3-Dichloropropene.

¹³ The Tapwater screening level applied to 3&4-Methylphenol is the screening level for 3-Methylphenol. This is a conservative level; it is lower than the screening level for 4-Methylphenol.

⁻⁻⁻ USEPA and/or PREQB have not developed a screening level for this compound.

Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	A-1R4 3/22/2017	A-2R2 3/22/2017	D-1R 3/21/2017	E-1R 3/21/2017	G-1R3 3/21/2017	MW-11 3/20/2017	S-28 3/17/2017	S-29R 3/22/2017	S-30 3/20/2017	S-31R2 3/22/2017	S-32 3/16/2017	S-33 3/16/2017	S-34 3/16/2017	S-35D 3/9/2017	S-35S 3/9/2017	S-36 3/16/2017	S-37 3/17/2017	S-38 3/21/2017	S-39D 3/15/2017	S-39S 3/15/2017	UP-1 3/17/2017	UP-1 DUP 3/17/2017	UP-2 3/17/2017
Acetone	18000000	77000000	14000		<25	<25	<25	<25	<13000	<25	Building 5	Area COC Analy	ytical Results (u <25	2/L) <500	<5000	<25	<25	<25	<25	<25	<25	<25	<25	<63	<25	<25	<25
Benzene	1.3	5.6	5	5	4.5	<1	0.9 J	<1	<500	<1	<1	<1	0.48 J	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Ethylbenzene	2.6	12	700	530	64.9	0.81 J	<1	<1	23900	<1	<1	<1	<1	1300	34200	<1	<1	<1	<1	<1	<1	<1	<1	389 J	<1	<1	<1
Isopropyl Alcohol	450000	1900000	410		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100
Methanol	86000000	360000000	20000		<200	<200	<200	<200		<200	<200	<200	<200	<200	<200	<200	<200	<200 J	<200 J	<200	<200	<200	<200	<200	<200	<200	<200
Methyl Isobutyl Ketone (MIBK) Toluene	420000 15000	1800000 63000	6300	1000	<5	<5	<5	<5	<2500 <500 I	<5	<5	<5	<5	<100 <20	<1000 62.7 I	<5 <1	<5	<5 <1	<5 <1	<5 <1	<5	<5 <1	<5	<13	<5	<5 <1	<5
Xylene (total)	290	1200	10000	10000	548	1.8 J	0.94 J	<2	135780	<2	<2	<2	<2	532	59950	<2	<2	<2	<2	<2	<2	1.2 J	<2	1140.4	<2	<2	<2
	Other Votable Organic Compounds Analytical Results (ug/L) chloroethane 6000 25000 200 4 4 4 500 4																										
1,1,2,2-Tetrachloroethane	2.4	25000	0.076	1.7	<1	<1	<1	<1	<500 <500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,1,2,2-Tetrachioroethane	4	18	5	5	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,1-Dichloroethane	6.2	27	2.8		<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,1-Dichloroethylene	160	690	7	7	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,2,3-Trichlorobenzene			7		<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1,2,4-Trichlorobenzene	25	110	70	35	<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
1,2,4-Trimethylbenzene	21	89	56		0.45 J	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,2-Dibromo-3-chloropropane	0.02	0.24	0.2		<5	<5	<5	<5	<2500	<5	<5	<5	<5	<100	<1000	<5	<5	<5	<5	<5	<5	<5	<5	<13	<5	<5	<5
1,2-Dibromoethane 1,2-Dichlorobenzene	0.13 1900	0.58 8100	0.05 600	0.052 420	<2	<2	<2	<2	<1000 <500	<2	<2	<2	<2 <1	<40 <20	<400 <200	<2	<2 <1	<2	<2	<2 <1	<2	<2	<2	<5 <2.5	<2	<2	<2
1,2-Dichloroethane	1.8	7.8	600	3.8	<1	<1	<1	<1	<500 <500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,2-Dichloropropane	1.9	8.4	5	5.0	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1.3-Butadiene	0.027	0.12	0.018		<2	<2	<2	<2	<1000	<2 R	<2	<2	<2	<40	<400	<2	<2 J	<2.J	<2.J	<2	<2	<2	<2.J	<5 R	<2	<2	<2
1,3-Dichlorobenzene				320	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,4-Dichlorobenzene	1.9	8.3	75	63	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
1,4-Dioxane	2200	9600	0.46	-	47.7	<0.29	19.1 J	1140	0.54 J	188	<0.29	<0.29	1300	<0.3	3	18.4	15.9	22.7	333	2.6	< 0.29	172	41.3	34.8	1.2	1.5	313
2-Butanone (MEK)	1800000	7500000	5600		<5	<5	<5	<5	<2500	<5	<5	<5	<5	<100	<1000	<5	<5	<5	<5	<5	<5	<5	<5	<13	<5	<5	<5
2-Hexanone	6200	26000	38		<10	<10	<10	<10	<5000	<10	<10	<10	<10	<200	<2000	<10	<10	<10	<10	<10	<10	<10	<10	<25	<10	<10	<10
Benzyl Chloride Bromochloromethane	2.5 560	11 2400	0.089		<2	<2	<2	<2	<1000 <500	<2	<2	<2	<2 <1	<40 <20	<400 <200	<2	<2	<2	<2	<2 <1	<2	<2	<2	<5 <2.5	<2	<2	<2 <1
Bromodichloromethane	0.69	2400	0.13	5.5	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Bromoform	85	370	3.3	43	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Carbon Disulfide	1000	4300	810		<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
Carbon Tetrachloride	0.34	1.5	5	2.3	<1	<1	<1	<1	<500	<1 J	<1	<1	<1 J	<20	<200	<1	<1	<1	<1	<1	<1 J	<1	<1	<2.5	<1	<1	<1 J
Chlorobenzene	310	1300	100	100	<1	<1	<1	<1	<500	<1	<1	0.38 J	0.34 J	<20	<200	0.45 J	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	0.46 J
Chloroethane	20000	82000	21000		<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400	<2	<2	<2 J	<2 J	<2	<2	<2	<2	<5	<2	<2	<2
Chloroform Chloromethane	0.66	2.9	190	57	<1	<1	<1	<1	<500 <1000	<1	<1	<1	<1	<20 <40	<200 <400	<1	<1	<1	<1	<1	<1	<1 2	<1 2	<2.5	<1	<1	<1
cis-1 2-Dichloroethylene	230	960	190 70	70	<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400 <200	<2	<2	<2	<2	<2	<2	<1	<1	<2.5	<1	<1	<2
cis-1,2-Dichloropenylene			0.47	3.4	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Cvclohexane	820	3500	13000	3.4	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Dibromochloromethane		3300	0.87	4	<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Dichlorodifluoromethane	6	25	200		<2	<2	<2	<2	<1000	<2	<2	<2	<2	<40	<400	<2	<2	<2	<2	<2	<2	<2	<2	<5	<2	<2	<2
Freon 113	1200	5100	55000		<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	11.8	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Hexachlorobutadiene	0.21	0.93	0.14	4.4	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Isopropylbenzene	630	2600	450	-	49.4	<1	1.1	0.56 J	<500	<1	<1	26	1.2	34.9	385	45.1	45.1	<1	<1	8	<1	<1	<1	3.2	36.9	38.4	<1
Methyl Acetate Methyl Bromide	15	63	20000		<20	<20	7.6 J	<20	<10000 <1000	<20 <2	<20	<20	<20 <2	<400 <40	<4000 <400	<20	<20	<20	<20	<20	<20	<20	<20	<50 <5	<20	<20	<20 <2
Methyl Tert Rutyl Ether	15 370	1600	7.5	14	128	0.55 J	6.3	3.6	<1000	1.2	1.4	0.51 J	4.5	<40	<400	4.5	4.5	<2	1.3	0.61 J	0.741	0.85 J	0.43 (<2.5	<1	<1	2.9
Methyl Tert Butyl Etner Methylcyclohexane	3/0	1000	14	14	<1	0.55 J	6.3	3.b <1	<500 <500	1.2 <1	1.4 <1	0.51 J	4.5 <1	<20	<200	4.5	4.5 <1	<1	1.3	0.61 J	<1	0.85 J	0.43 J <1	<2.5	<1	<1	2.9 <1
Methylene Chloride	630	7600	5	46	<5	<5	<5	<5	<2500	<5	<5	<5	<5	<100	976 J	<5	<5	<5	<5	<5	<5	<5	<5	<13	<5	<5	<5
p-Isopropyl Toluene					<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Styrene	7000	29000	100		<1	<1	<1	<1	<500	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
tert-Amyl Alcohol	4100	17000	6.3		10.6 J	<20	<20	<20	<10000	<20	<20	6.4 J	<20	<400	<4000	6.8 J	6.8 J	<20	<20	<20	<20	<20	<20	<50	<20	<20	<20
tert-Butyl Alcohol	-	-		1400	386	<20	36.2	<20	<10000	<20	<20	<20	32	<400	<4000	33.3	33.3	<20	<20	6.2 J	<20	<20	<20	<50	<20	<20	<20
Tetrachloroethylene	12	50	5	5	<1	<1	<1	<1	<500	<1 J	<1	<1	<1 J	<20	<200	<1	<1	<1	<1	<1	<1 J	<1	<1	<2.5	<1	<1	<1 J
Tetrahydrofuran	590000	2500000	3400	100	<5	<5 <1	<5 <1	<5	<2500 <500	<5	<5 <1	<1	<5 <1	<100 <20	<1000 <200	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5 <1	<5	<5	<13 <2.5	<5 <1	<5 <1	<5 <1
trans-1,2-Dichloroethylene			100	3.4						<1				<20				<1		<1					<1	<1	-
trans-1,3-Dichloropropene ⁴	0.94	5.9	0.47	3.4	<1	<1	<1	<1	<500 <500	<1	<1	<1	<1 <1	<20	<200 <200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5 <2.5	<1	<1	<1
Trichloroethylene Trichlorofluoromethane	0.94	5.9	5 5200		<1	<1	<1	<1	<500 <1000	<1	<1	<1	<1	<20	<200	<1	<1	<1	<1	<1	<1	<1	<1	<2.5	<1	<1	<1
Vinvl Chloride	0.13	2.1	5200	0.25	<1	<1	<1	<1	<500	<1	<2	<2	<2	<40	<200	<1	<1	<1	<2	<1	<1	<1	<1	<2.5	<1	<1	<2
	0.13			0.23	+ **	+ **		+	1,000			Weight Alcohols			1200	1 -74				- '-				74.00	**	7.4	
Ethanol				10000	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100
Isobutyl Alcohol			5900		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100
n-Butyl Alcohol			2000	-	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100
n-Propyl Alcohol					<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100
sec-Butyl Alcohol	58000000		24000		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100 J	<100 J	<100	<100	<100	<100	<100	<100	<100	<100

Parameter	USEPA Residential Groundwater Concentration for Vapor Intrusion	USEPA Industrial Groundwater Concentration for Vapor Intrusion	USEPA MCL or June 2017 Tap Water RSL	April 2016 PRWQS ¹	A-1R4 3/22/2017	A-2R2 3/22/2017	D-1R 3/21/2017	E-1R 3/21/2017	G-1R3 3/21/2017	MW-11 3/20/2017	S-28 3/17/2017	S-29R 3/22/2017	S-30 3/20/2017	S-31R2 3/22/2017	S-32 3/16/2017	S-33 3/16/2017	5-34 3/16/2017	S-35D 3/9/2017	S-35S 3/9/2017	S-36 3/16/2017	S-37 3/17/2017	S-38 3/21/2017	S-39D 3/15/2017	S-39S 3/15/2017	UP-1 3/17/2017	UP-1 DUP 3/17/2017	UP-2 3/17/2017
	1	1										tic Hydrocarbor															
1-Methylnaphthalene 2-Methylnaphthalene			1.1 36		<0.99 0.58 I	<0.95	<0.97	<0.97	<1 J	<0.99	<0.98	<0.97	<0.96	<1	<1	<0.98	<1	<0.96	<1	< 0.96	<0.96	<0.96	<0.98	<1	<1	<0.98	<1
Acenaphthene			530	670	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Acenaphthylene					<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Anthracene Benzo(a)anthracene			1800	8300	18.1	<4.8 <0.19	19.6 <0.19	<4.9 <0.19	<24 <0.2 I	<0.2	<4.9 <0.2	16.4 <0.19	<4.8 <0.19	1.9 J	<50 <0.2	<4.9 <4.9	<5 <0.2	<4.8 <0.19	<5 <0.2	<4.8 <0.19	<4.8 <0.19	<4.8 <0.19	<4.8	1.7 J	1.3 J <0.2	1.4 J	<5 <0.2
Benzo(a)pyrene			0.03	0.038	<0.2	<0.19	<0.19	<0.19	<0.2 J	<0.2	<0.2	<0.19	<0.19	<0.2	<0.2	<4.9	<0.2	<0.19	<0.2	<0.19	<0.19	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(b)fluoranthene			0.25	0.038	<0.2	< 0.19	< 0.19	< 0.19	<0.2 J	<0.2	<0.2	< 0.19	<0.19	<0.2	<0.2	<4.9	<0.2	<0.19	<0.2	< 0.19	< 0.19	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(g,h,i)perylene Benzo(k)fluoranthene	-		2.5	210 0.038	<0.2	<4.8 <0.19	<4.9 <0.19	<4.9	<24 <0.2 J	<5	<4.9 <0.2	<4.9 <0.19	<4.8	<5 <0.2	<50 <0.2	<4.9 <4.9	<5	<4.8	<5	<4.8 <0.19	<4.8	<4.8 <0.19	<4.8 <0.2	<4.8 <0.2	<5	<4.9 <0.2	<5
Chrysene Chrysene			2.5	0.038	<0.2	<0.19	<0.19	<0.19 <0.19	<0.2 J	<0.2	<0.2	<0.19	<0.19 <0.19	<0.2	<0.2	<4.9 <4.9	<0.2 <0.2	<0.19 <0.19	<0.2 <0.2	<0.19	<0.19 <0.19	<0.19	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2
Dibenz(a,h)anthracene			0.025	0.038	< 0.2	<0.19	<0.19	< 0.19	<0.2 J	<0.2	<0.2	<0.19	< 0.19	<0.2	<0.2	<4.9	<0.2	< 0.19	<0.2	< 0.19	<0.19	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2
Fluoranthene			800	130	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5 <5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Fluorene Indeno(1.2.3-cd)pyrene			290 0.25	1100 0.038	<5 <0.2	<4.8 <0.19	<4.9 <0.19	<4.9 <0.19	<24 <0.2 J	<5 <0.2	<4.9 <0.2	<4.9 <0.19	<4.8 <0.19	<0.2	<50 <0.2	<4.9 <4.9	<5 <0.2	<4.8 <0.19	<5 <0.2	<4.8 <0.19	<4.8 <0.19	<4.8 <0.19	<4.8 <0.2	<4.8 <0.2	<5 <0.2	<4.9 <0.2	<5 <0.2
Naphthalene	3.2	14	0.17	0.17	0.62 J	<0.95	< 0.97	< 0.97	<1 J	<0.99	<0.98	< 0.97	< 0.96	<1	0.4 J	<0.98	<1	<0.96	<1	< 0.96	< 0.96	<0.96	< 0.98	<1	<1	<0.98	<1
Phenanthrene				18	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	1.5 J	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Pyrene			120	830	<5	<4.8	<4.9	<4.9	<24	<5	<4.9 Volatile Petrolei	<4.9 um Hydrocarbon	<4.8 s Analytical Res	<5 ults (un/L)	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
C5-C8 Aliphatics (Unadj.)			1300		465	<100	<100	<100 J	<100	<100 J	<100	<100	<100	<100	38.4 J	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
C9-C10 Aromatics (Unadj.)			5.5		49.1 J	<100	<100	<100 J	93.5 J	<100 J	<100	<100	<100	42.8 J	262	35.6 J	35.6 J	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100
C9-C12 Aliphatics (Unadj.)			100		412	<100	<100	<100 J	<50000	<100 J	<100 tractable Petrol	<100 eum Hydrocarbo	<100	3080 esults (ua/L)	75400	<100	<100	<100	<100	<100	<100	<100	<100	394	<100	<100	<100
C11-C22 Aromatics (Unadj.)			5.5		<190	185 J	314	<200	<200	<200	<200	133 J	<200	277	<200 J	<200 J	<200 J	<200	<200	<190 J	<200 J	<200	<200	151 J	<200 J	<200	<200 J
C19-C36 Aliphatics			60000 100		<190	<190	<190	<200	128 J	<200	<200	<190	<200	<200	50.2 J	<200	<200	50.4 J	51.6 J	<190	<200	<200	<200	<200	<200	<200	<200
C9-C18 Aliphatics			100		<190	<190	<190	<200	249	<200	<200 Semivalatile Ora	<190	<200 Is Analytical Res	<200 ults (ug/L)	95.3 J	<200	<200	<200	<200	<190	<200	<200	<200	<200	<200	<200	<200
1,1'-Biphenyl	23	95	0.83	-	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
1,2,4,5-Tetrachlorobenzene			1.7		<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol			240 1200		<5.1	<4.8 J	<4.9 <4.9	<4.9 <4.9	<24 J	- 5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5.1	<50 J	<4.9 J	<51	<4.8 <4.8	<5	<4.8 J	<4.8	<4.8 <4.8	<4.8 <4.8	<4.8 R	<5 <5	<4.9 <4.9	<5
2,4,6-Trichlorophenol			4.1	14	<5	<4.8	<4.9	<4.9	<24	- 5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	0	<4.9	<5
2,4-Dichlorophenol			46	77	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2,4-Dimethylphenol			360	380	4.7 J <25 J	<4.8 <24.1	<4.9 <24	<4.9 <24	6.8 J	<5 <25	<4.9 <25	<4.9 <24	<4.8 <24	1.1 J	53.2 <250	<4.9 <25	<5 <25	<4.8 <24	<5 <25	<4.8 <24	<4.8 <24	<4.8 <24	<4.8 <24	2.5 J	<5 <25	<4.9 <25	<5 <25
2,4-Dinitrotoluene			0.24	1.1	<5	<4.8	<4.9	<4.9	<24 J	<5	<4.9	<4.9	<4.8	<5	<50 J	<4.9 J	<51	<4.8	<5	<4.8 J	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2,6-Dinitrotoluene			0.049		<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2-Chloronaphthalene 2-Chloronhenol			750 91	1000	<5	<4.8	<4.9 <4.9	<4.9	<24	<5	<4.9	<4.9 <4.9	<4.8	<5	<50 <50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8 <4.8	<4.8	<4.8	<5	<4.9	<5
2-Methylphenol			930		<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2-Nitroaniline			190		<5.J	<4.8 J	<4.9	<4.9	<24 J	<5	<4.9	<4.9	<4.8	<5 J	<50 J	<4.9 J	<5 J	<4.8	<5 J	<4.8 J	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
2-Nitrophenol			930		<5 J	<4.8 J	<4.9 <4.9	<4.9 <4.9	<24 J	<5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 J	<50 J	<4.9 J	<5 J	<4.8 <4.8	<5	<4.8 J	<4.8	<4.8 <4.8	<4.8	<4.8 <4.8	<5	<4.9 <4.9	<5
3&4-Methylphenol ³ 3,3'-Dichlorobenzidine			0.13	0.21	<5	<4.8	<4.9 J	<4.9 J	<24	<5	<4.9 <4.9	<4.9 <4.9	<4.8 J	<5 <5	<50	<4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8	<4.8 <4.8	<4.8 J	<4.8 <4.8 J	<4.8 J	<5 <5	<4.9 <4.9	<5 <5
3-Nitroaniline					<5	<4.8	<4.9 J	<4.9 J	<24	<5 J	<4.9	<4.9	<4.8 J	<5	<50	<4.9	<5	<4.8 J	<5	<4.8	<4.8	<4.8 J	<4.8 J	<4.8 J	<5	<4.9	<5
4,6-Dinitro-2-Methylphenol			1.5	13	<9.9 J	<9.5 J	<9.7	<9.7	<48 J	<9.9	<9.8	<9.7	<9.6	<10 J	<100 J	<9.8 J	<10 J	<9.6	<10	<9.6 J	<9.6	<9.6	<9.6	<9.6	<10	<9.8	<10
4-Bromophenyl Phenyl Ether 4-Chloro-3-Methylphenol			1400		<5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24 <24	- 6	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 <5	<50 <50	<4.9 <4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<5 <5	<4.9 <4.9	<5
4-Chloroaniline			0.37	-	<5	<4.8	<4.9 J	<4.9 J	<24	<5 J	<4.9	<4.9	<4.8 J	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8 J	<4.8 J	<4.8 J	<5	<4.9	<5
4-Chlorophenyl Phenyl Ether				-	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
4-Nitroaniline 4-Nitrophenol			3.8		<5 <25	<4.8 <24	<4.9 <24	<4.9 <24	<24 <120	<5 <25	<4.9 <25	<4.9 <24	<4.8 <24	<5 <25	<50 <250	<4.9 <25	<5 <25	<4.8 <24	<5 <25	<4.8 <24	<4.8 <24	<4.8 <24	<4.8 <24	<4.8 <24	<5 <25	<4.9 <25	<5 <25
Acetophenone			1900		<5	<4.8	<4.9	<4.9	4.1 J	<5	<4.9	<4.9	<4.8	9.3	27.9 J	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Atrazine			3		<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8 <24	<4.8	<5	<4.9	<5
Benzaldehyde Bis(2-chloroethoxy)methane			19 59		6.3 J	<24 <4.8 J	<24 <4.9	<24 <4.9	<120 <24 J	<25 <5	<25 <4.9 J	<24 <4.9	<24 <4.8	<25 <5.1	<250 <50	<25 <4.9	<25 <5	<24 <4.8 J	<25 <5 J	<24 <4.8	<24 <4.8 J	<24 <4.8	<24 <4.8	<24 <4.8	<25 <5 J	<25 <4.9 J	<25 <5 J
Bis(2-chloroethyl)ether	8.4	37	0.014	0.3	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
bis(2-Chloroisopropyl)ether			710	1400	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Bis(2-ethylhexyl)phthalate Butyl Benzyl Phthalate	-		6 16	12 1500	<5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24 <24	<5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 <5	<50 <50	<4.9 <4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<5 <5	<4.9 <4.9	<5 <5
Caprolactam			9900		<9.9	<9.5	<9.7	<9.7	<48	<9.9	<9.8	<9.7	<9.6	<10	<100	<9.8	<10	<9.6	<10	<9.6	<9.6	<9.6	<9.6	<9.6	<10	<9.8	<10
Carbazole					<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Dibenzofuran Diethyl Phthalate		-	7.9 15000	17000	<5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24 <24	<5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 <5	<50 <50	<4.9 <4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<5 <5	<4.9 <4.9	<5 <5
Dimethyl Phthalate				270000	<5	<4.8	<4.9	<4.9	<24	- 6	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Di-n-butyl Phthalate			900	2000	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Di-n-octyl Phthalate Hexachlorobenzene	0.058	0.25	200	0.0028	<5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24	<5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 <5	<50 <50	<4.9 <4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<5 <5	<4.9 <4.9	<5 <5
Hexachlorocyclopentadiene	0.058	0.25	50	40	<5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24	<5	<4.9 <4.9	<4.9 <4.9	<4.8	<5	<50	<4.9	<5	<4.8 <4.8	<5	<4.8	<4.8	<4.8 <4.8	<4.8	<4.8 <4.8 R	<5	<4.9 <4.9	<5
Hexachloroethane	1.1	4.8	0.33	14	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Isophorone			78	350	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	,	<4.9	<5
Nitrobenzene N-Nitrosodi-n-propylamine	50	220	0.14	0.05	<5 <5	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<24 <24	<5	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<5 <5	<50 <50	<4.9 <4.9	<5 <5	<4.8 <4.8	<5 <5	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<4.8 <4.8	<5 <5	<4.9 <4.9	<5 <5
N-Nitrosodiphenylamine			12		<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8	<5	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5
Pentachlorophenol		-	1	1	<25	<24	<24	<24	<120	<25	<25	<24	<24	<25	<250	<25	<25	<24	<25	<24	<24	<24	<24	<24	<25	<25	<25
Phenol			5800	10000	<5	<4.8	<4.9	<4.9	<24	<5	<4.9	<4.9	<4.8	<5	<50	<4.9	<5	<4.8 J	<5 J	<4.8	<4.8	<4.8	<4.8	<4.8	<5	<4.9	<5

Table 4 Building 5 Area Groundwater Analytical Results - March 2017

		1	1		1	1	1	1		1		1			1	1	r										
	USEPA	USEPA																									
	Residential	Industrial																									
	Groundwater	Groundwater	USEPA																								
	Concentration for		MCL or June 2017	April 2016	A-1R4	A-2R2	D-1R	E-1R	G-1R3	MW-11	S-28	S-29R	S-30	S-31R2	S-32	S-33	S-34	S-35D	S-35S	S-36	S-37	5-38	S-39D	S-39S	UP-1	UP-1 DUP	UP-2
Parameter	Vapor Intrusion	Vapor Intrusion	Tan Water RSI	PRWOS ¹	3/22/2017	3/22/2017	3/21/2017	3/21/2017	3/21/2017	3/20/2017	3/17/2017	3/22/2017	3/20/2017	3/22/2017	3/16/2017	3/16/2017	3/16/2017	3/9/2017	3/9/2017	3/16/2017	3/17/2017	3/21/2017	3/15/2017	3/15/2017	3/17/2017	3/17/2017	3/17/2017
Turumeter	Vapor ma asion	Vapor intrasion	Top Water Not	1111143	3/22/201/	3/22/2027	3/21/201/	3,21,201,	3,21,201,	3,20,201,	-,,	rine Pesticide Ar	-,,		3/10/2017	3/10/201/	3/10/2017	3,3,202,	3/3/202/	3/10/201/	3/1//201/	3/21/201/	3/13/101/	3,13,101,	3,11,101,	3/1//201/	3/1//201/
4.4'-DDD			0.032		<0.039	<0.038	< 0.019	<0.02	< 0.019	<0.08	<0.08	<0.02	<0.08	<0.039	< 0.08	< 0.08	<0.08	<0.077	<0.08	<0.08	< 0.08	< 0.019	<0.08	< 0.08	<0.08	<0.08	< 0.08
4.4'-DDE	9.9		0.046		<0.039	<0.038	0.071	<0.02	< 0.019	<0.08	<0.08	<0.02	<0.08	< 0.039	<0.08	<0.08	<0.08	<0.077	<0.08	<0.08	<0.08	< 0.019	<0.08	<0.08	<0.08	<0.08	<0.08
4.4'-DDT			0.23	0.0022	< 0.039	< 0.038	< 0.019	<0.02	< 0.019	<0.08	<0.08	<0.02	<0.08	< 0.039	<0.08	<0.08	<0.08	<0.077	<0.08	<0.08	<0.08	< 0.019	<0.08	<0.08	<0.08	<0.08	<0.08
Aldrin	0.19	0.85	0.00092	0.00049	<0.02	< 0.019	< 0.0097	<0.0098	< 0.0097	<0.04	<0.04	<0.0098	<0.04	<0.02	< 0.04	< 0.04	< 0.04	<0.038	<0.04	< 0.04	< 0.04	< 0.0095	< 0.04	<0.04	<0.04	<0.04	<0.04
alpha-BHC			0.0072		<0.02	< 0.019	< 0.0097	< 0.0098	< 0.0097	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	<0.038	<0.04 J	< 0.04	< 0.04	< 0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
alpha-Chlordane ⁴			2	0.008	<0.02	0.0099 J	0.0022 J	< 0.0098	< 0.0097	< 0.04	0.046	< 0.0098	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	<0.038	< 0.04	0.041	< 0.04	0.015	< 0.04	< 0.04	< 0.04	< 0.04	0.025 J
beta-BHC			0.025	0.091	<0.02	< 0.019	< 0.0097	< 0.0098	0.0041 J	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	<0.038	< 0.04	< 0.04	< 0.04	<0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
delta-BHC					<0.02	< 0.019	< 0.0097	< 0.0098	< 0.0097	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	0.025 J	< 0.04	< 0.04	<0.038	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Dieldrin			0.0018	0.00052	0.015 J	< 0.019	0.0034 J	< 0.0098	< 0.0097	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	< 0.038	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Endosulfan I ⁵			100	62	<0.02	< 0.019	0.0022 J	<0.0098	<0.0097	<0.04	<0.04	< 0.0098	<0.04	< 0.02	<0.04	< 0.04	<0.04	<0.038	<0.04	<0.04	<0.04	<0.0095	<0.04	<0.04	<0.04	<0.04	< 0.04
Endosulfan II ⁵			100	62	<0.02	< 0.019	< 0.0097	<0.0098	0.0038 J	< 0.04	< 0.04	0.025	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	<0.038	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
Endosulfan Sulfate ⁶			100	62	<0.039	<0.038	<0.019	<0.02	<0.019	<0.08	<0.08	<0.02	<0.08	<0.039	<0.08	<0.08	<0.08	<0.077	<0.08	<0.08	<0.08	<0.019	<0.08	<0.08	<0.08	<0.08	<0.08
Endrin			2	0.059	<0.039	<0.038	0.0057 J	<0.02	< 0.019	<0.08	<0.08	<0.02	<0.08	< 0.039	<0.08	<0.08	<0.08	<0.077	<0.08	<0.08	<0.08	< 0.019	<0.08	<0.08	<0.08	<0.08	<0.08
Endrin Aldehyde				0.033	<0.039	0.1	0.011 J	0.0085 J	< 0.019	<0.00	<0.08	0.013 J	<0.08	< 0.039	<0.08	<0.08	<0.08	<0.077	<0.08	<0.08	<0.08	0.0041 J	<0.08	0.019 J	<0.08	<0.08	<0.08
Endrin Ketone					< 0.039	< 0.038	< 0.019	< 0.02	< 0.019	<0.08	<0.08 J	<0.02	<0.08	< 0.039	<0.08	<0.08 J	<0.08 J	0.014 J	<0.08	<0.08 J	<0.08 J	< 0.019	<0.08	< 0.08	<0.08 J	<0.08 J	<0.08 J
gamma-BHC (Lindane)			0.2		<0.02	0.0052 J	< 0.0097	< 0.0098	< 0.0097	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	< 0.04	< 0.04	< 0.04	<0.038	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04
gamma-Chlordane ⁴			2	0.008	< 0.02	< 0.019	0.011	<0.0098	< 0.0097	< 0.04	< 0.04	< 0.0098	< 0.04	< 0.02	< 0.04	0.017 J	0.013 J	<0.038	<0.04	< 0.04	< 0.04	<0.0095	< 0.04	< 0.04	< 0.04	<0.04	< 0.04
Heptachlor	0.11	0.49	0.4	0.00079	<0.02	0.006 J	<0.0097	<0.0098	< 0.0097	<0.04	<0.04	<0.0098	<0.04	<0.02	< 0.04	< 0.04	<0.04	<0.038	<0.04	< 0.04	< 0.04	< 0.0095	< 0.04	<0.04	<0.04	<0.04	<0.04
Heptachlor Epoxide	0.7	3.1	0.2	0.00039	<0.02	< 0.019	0.0058 J	<0.0098	< 0.0097	<0.04	< 0.04	<0.0098	< 0.04	<0.02	< 0.04	< 0.04	< 0.04	<0.038	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.04	<0.04	<0.04	< 0.04	< 0.04
Methoxychlor			40	40	0.024 J	< 0.038	< 0.019	< 0.02	< 0.019	< 0.08	< 0.08	< 0.02	< 0.08	< 0.039	< 0.08	< 0.08	< 0.08	< 0.077	< 0.08	< 0.08	< 0.08	< 0.019	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08
Toxaphene			3	0.0028	< 0.98	< 0.96	< 0.49	< 0.49	< 0.49	<2	<2	< 0.49	<2	< 0.98	<2	<2	<2	<1.9	<2	<2	<2	< 0.48	<2	<2	<2	<2	<2

NOTE:

April 2015 Peterto Rico Water Quality Standards Regulation for Class SG groundwater.

April 2015 Peterto Rico Water Quality Standards Regulation for Class SG groundwater.

**USEPA screening level and PRVQS are for 1.3-Oichborgorpene. The USEPA and PRECQB have not specifically established screening levels for cis-1.3-Oichborgorpene or trans-1.3-Oichborgorpene.

**The Tapwater screening level and PRVQS is for Chloridane. The USEPA and PRECQB has not specifically established a screening level for plabs-Chloridane or anima-Chloridane.

**USEPA screening level and PRVQS is for Chloridane. The USEPA and PRECQB has not specifically established a screening level for plabs-Chloridane or anima-Chloridane.

USEPA screening level store for PRVQS is for Endosuffan-LI.

USEPA screening level is for Endosuffan-LI.

USEPA screening level is for Endosuffan-LI.

USEPA screening level is for Endosuffan-LI.

**USEPA Ascreening le

																			T
	USEPA	USEPA																	
	Residential	Industrial																	
	Groundwater	Groundwater	USEPA																
		Concentration for	MCL or June 2017	April 2016	MW-20D	MW-20S	MW-21S	MW-22S	MW-23S	RA-10D	RA-10S	S-40D	S-40S	S-41D	S-41S	S-42D	S-42S	S-43D	S-43S
Parameter	Vapor Intrusion	Vapor Intrusion	Tap Water RSL	PRWQS ¹	3/8/2017	3/8/2017	3/6/2017	3/6/2017	3/6/2017	3/8/2017	3/8/2017	3/15/2017	3/15/2017	3/9/2017	3/9/2017	3/7/2017	3/7/2017	3/7/2017	3/7/2017
								nic Compounds											1
1,1,1-Trichloroethane	6000	25000	200	200	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2,2-Tetrachloroethane	2.4	11	0.076	1.7	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	4	18	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	6.2	27 690	2.8 7	7	<1	<1	0.5 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,1-Dichloroethylene 1,2,3-Trichlorobenzene	160	690	7		<2	<1 <2	0.86 J <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2	<2	<1 <2	<1 <2	<1 <2	<1 <2	<1 <2
1,2,4-Trichlorobenzene	25	110	70	35	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,2,4-Trimethylbenzene	21	89	56	33	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dibromo-3-chloropropane	0.02	0.24	0.2		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1.2-Dibromoethane	0.13	0.58	0.05	0.052	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
1,2-Dichlorobenzene	1900	8100	600	420	<1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	1.8	7.8	5	3.8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	1.9	8.4	5	5.0	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,3-Butadiene	0.027	0.12	0.018		<2	<2 J	<2	<2	<2	<2 J	<2 J	<2 J	<2 J	<2 J	<2 J	<2	<2	<2	<2
1,3-Dichlorobenzene				320	<1	<1	0.38 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dichlorobenzene	1.9	8.3	75	63	<1	<1	0.36 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dioxane	2200	9600	0.46		23.3 J	2.6	0.57	<0.29	<0.3	1720	1640	2.9	8.7	1.2	1.8	1990	2540	2560	2600
2-Butanone (MEK)	1800000	7500000	5600		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2-Hexanone	6200	26000	38		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acetone	18000000	77000000	14000		<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25	<25
Benzene	1.3	5.6	5	5	<1	<1	<1	<1	<1	0.59 J	<1	<1	<1	<1	<1	<1	<1	0.4 J	0.4 J
Benzyl Chloride	2.5	11	0.089		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Bromochloromethane	560	2400	83		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromodichloromethane	0.69	3	0.13	5.5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Bromoform	85	370	3.3	43	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Carbon Disulfide	1000	4300	810		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Carbon Tetrachloride	0.34	1.5	5	2.3	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chlorobenzene	310	1300	100	100	<1	<1	<1	<1	<1	0.26 J	<1	<1	<1	<1	<1	0.3 J	0.28 J	6.2	12
Chloroethane	20000	82000	21000		<2 J	<2 J	<2	<2	<2	<2 J	<2 J	<2	<2	<2 J	<2 J	<2	<2	<2	<2
Chloroform	0.66	2.9	8	57	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloromethane	230	960	190		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
cis-1,2-Dichloroethylene			70	70	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
cis-1,3-Dichloropropene ²			0.47	3.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cyclohexane	820	3500	13000		0.59 J	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.49 J	0.41 J	4.5	5.5
Dibromochloromethane			0.87	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane Ethylbenzene	6 2.6	25 12	200 700	530	<2 <1	<2 <1	1 J <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	<2 <1	2.3 <1	2.9 <1	<2 <1	<2 <1
Freon 113	1200	5100	55000	530	<1	<1	23.9	<1	<1	<1	<1	<1	<1	<1	<1	25.1	2.8	5.6	<1
Hexachlorobutadiene	0.21	0.93	0.14	4.4	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Isopropylbenzene	630	2600	450	4.4	<1	<1	<1	<1	<1	11.2	<1	<1	0.24 J	<1	<1	<1	<1	4.2	10.1
Methyl Acetate			20000		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Methyl Bromide	15	63	7.5		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Methyl Isobutyl Ketone (MIBK)	420000	1800000	6300		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Methyl Tert Butyl Ether	370	1600	14	14	17.7	1.7	<1	<1	<1	4.8	4.1	<1	0.27 J	<1	<1	0.78 J	1.5	10.4	9.7
Methylcyclohexane					<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Methylene Chloride	630	7600	5	46	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
p-Isopropyl Toluene				-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Styrene	7000	29000	100	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
tert-Amyl Alcohol	4100	17000	6.3		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	8.6 J
tert-Butyl Alcohol				1400	796	<20	<20	<20	<20	79.7	<20	<20	<20	<20	<20	<20	<20	120	182
Tetrachloroethylene	12	50	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Tetrahydrofuran	590000	2500000	3400		2.7 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	2 J	2 J
Toluene	15000	63000	1000	1000	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
trans-1,2-Dichloroethylene			100	100	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	0.41 J	0.34 J	0.26 J	<1
trans-1,3-Dichloropropene ²			0.47	3.4	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichloroethylene	0.94	5.9	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane			5200		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Vinyl Chloride	0.13	2.1	2	0.25	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylene (total)	290	1200	10000	10000	<2	<2	<2	<2	<2	0.56 J	<2	<2	<2	<2	<2	<2	<2	<2	<2

																			Т
	USEPA	USEPA																	
	Residential Groundwater	Industrial Groundwater	USEPA																
	Concentration for			April 2016	MW-20D	MW-20S	MW-21S	MW-22S	MW-23S	RA-10D	RA-10S	S-40D	S-40S	S-41D	S-41S	S-42D	S-42S	S-43D	S-43S
Parameter	Vapor Intrusion		Tap Water RSL	PRWQS ¹	3/8/2017	3/8/2017	3/6/2017	3/6/2017	3/6/2017	3/8/2017	3/8/2017	3/15/2017	3/15/2017	3/9/2017	3/9/2017	3/7/2017	3/7/2017	3/7/2017	3/7/2017
		Г	1						Analytical Res								1		1
Ethanol Isobutyl Alcohol			5900	10000	<100 J <100 J	<100 J <100 J	<100 <100	<100 <100	<100 <100	<100 J <100 J	<100 J <100 J	<100 <100	<100 <100	<100 J <100 J	<100 J <100 J	<100 <100	<100 <100	<100 <100	<100 <100
Isopropyl Alcohol	450000	1900000	410		<100 J	<100 J	<100	<100	<100	<100 J	<100 J	<100	<100	<100 J	<100 J	<100	<100	<100	<100
Methanol	86000000	360000000	20000		<200 J	<200 J	<200	<200	<200	<200 J	<200 J	<200	<200	<200 J	<200 J	<200	<200	<200	<200
n-Butyl Alcohol			2000		<100 J	<100 J	<100	<100	<100	<100 J	<100 J	<100	<100	<100 J	<100 J	<100	<100	<100	<100
n-Propyl Alcohol	58000000		24000		<100 J	<100 J <100 J	<100	<100	<100	<100 J	<100 J	<100	<100	<100 J	<100 J	<100	<100	<100	<100
sec-Butyl Alcohol	58000000		24000		<100 J		<100	<100	<100 ns Analytical Re	<100 J	<100 J	<100	<100	<100 J	<100 J	<100	<100	<100	<100
1-Methylnaphthalene			1.1		<1 J	<1	<0.98	<0.96	<1	<1	<0.98	< 0.98	<1	<0.98	< 0.97	< 0.96	<0.98	<0.96	<1.1
2-Methylnaphthalene			36		<1 J	<1	<0.98	<0.96	<1	<1	<0.98	<0.98	<1	<0.98	< 0.97	< 0.96	<0.98	<0.96	<1.1
Acenaphthene			530	670	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Acenaphthylene Anthracene			1800	8300	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.9 <4.9	<4.8 1.3 J	<5.3 1.2 J
Benzo(a)anthracene			0.03	0.038	<0.2 J	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.19	<0.19	<0.2	<0.19	<0.21
Benzo(a)pyrene			0.2	0.038	<0.2 J	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.19	<0.19	<0.2	<0.19	<0.21
Benzo(b)fluoranthene			0.25	0.038	<0.2 J	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.19	<0.19	<0.2	<0.19	<0.21
Benzo(g,h,i)perylene				210	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Benzo(k)fluoranthene Chrysene			2.5 25	0.038	<0.2 J <0.2 J	<0.2 <0.2	<0.2 <0.2	<0.19 <0.19	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.19 <0.19	<0.19 <0.19	<0.2 <0.2	<0.19 <0.19	<0.21 <0.21
Dibenz(a,h)anthracene			0.025	0.038	<0.2 J	<0.2	<0.2	<0.19	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.19	<0.19	<0.2	<0.19	<0.21
Fluoranthene			800	130	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Fluorene			290	1100	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Indeno(1,2,3-cd)pyrene Naphthalene	3.2	14	0.25 0.17	0.038	<0.2 J	<0.2 <1	<0.2 <0.98	<0.19 <0.96	<0.2 <1	<0.2 <1	<0.2 <0.98	<0.2 <0.98	<0.2 <1	<0.2 <0.98	<0.19 <0.97	<0.19 <0.96	<0.2 <0.98	<0.19 <0.96	<0.21
Phenanthrene	5.2		0.17	18	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Pyrene			120	830	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
						ν		m Hydrocarbor	s Analytical Re	sults (ug/L)									
C5-C8 Aliphatics (Unadj.)			1300		<100 J	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	36.9 J	<100	58 J	65.3 J
C9-C10 Aromatics (Unadj.) C9-C12 Aliphatics (Unadj.)			5.5 100		<100 J <100 J	<100 <100	<100 <100	<100 <100	<100 <100	57.6 J <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	63.5 J 65.6 J
C5-C12 Aliphatics (Gliadj.)			100		(100)				ons Analytical R		100	100	100	100	100	100	100	100	03.03
C11-C22 Aromatics (Unadj.)			5.5		104 J	<190	<200	<200	<190	<190	<190	<200	<200	<200	<200	<190	<200	<190	<200
C19-C36 Aliphatics			60000		64 J	<190	<200	<200	<190	<190	<190	<200	<200	<200	<200	<190	<200	<190	<200
C9-C18 Aliphatics			100		<200	<190	<200	<200	<190	<190	<190	<200	<200	<200	<200	<190	<200	<190	<200
1,1'-Biphenyl	23	95	0.83		<5	<5	<4.9	<4.8	ls Analytical Res	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
1,2,4,5-Tetrachlorobenzene			1.7		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2,3,4,6-Tetrachlorophenol			240		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8 J	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2,4,5-Trichlorophenol			1200 4.1	14	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.9 <4.9	<4.8 <4.8	<5.3 <5.3
2,4,6-Trichlorophenol 2,4-Dichlorophenol			4.1	77	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2,4-Dimethylphenol			360	380	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2,4-Dinitrophenol			39	69	<25	<25	<25	<24	<25	<25	<25	<24 J	<24	<25	<24	<24	<25	<24	<26
2,4-Dinitrotoluene			0.24	1.1	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2,6-Dinitrotoluene 2-Chloronaphthalene			0.049 750	1000	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<4.8 <4.8	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.9 <4.9	<4.8 <4.8	<5.3 <5.3
2-Chlorophenol			91	81	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2-Methylphenol			930		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2-Nitroaniline			190		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
2-Nitrophenol			930		<5 <5 J	<5 <5 J	<4.9 <4.9	<4.8	<5	<5	<4.9 <4.9 J	<4.8 <4.8	<4.8	<4.9	<4.9 <4.9	<4.8 <4.8	<4.9	<4.8 <4.8	<5.3 <5.3
3&4-Methylphenol ³ 3.3'-Dichlorobenzidine			0.13	0.21	<5J	<5 J	<4.9 <4.9	<4.8 <4.8	<5 <5	<5 J <5	<4.9 J <4.9	<4.8 <4.8 J	<4.8 J	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.9 <4.9	<4.8 <4.8	<5.3 <5.3
3-Nitroaniline					<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8 J	<4.8 J	<4.9 J	<4.9 J	<4.8	<4.9	<4.8	<5.3
4,6-Dinitro-2-Methylphenol			1.5	13	<10	<10	<9.8	<9.6	<10	<10	<9.8	<9.6	<9.6	<9.8	<9.7	<9.6	<9.8	<9.6	<11
4-Bromophenyl Phenyl Ether					<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
4-Chloro-3-Methylphenol 4-Chloroaniline			1400 0.37		<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8	<5 <5	<5 <5	<4.9 <4.9	<4.8 <4.8 J	<4.8 <4.8 J	<4.9 <4.9	<4.9 <4.9	<4.8 <4.8	<4.9 <4.9	<4.8 <4.8	<5.3 <5.3
4-Chlorophenyl Phenyl Ether					<5	<5 <5	<4.9	<4.8	<5	<5	<4.9	<4.8 J	<4.8 J <4.8	<4.9	<4.9 <4.9	<4.8	<4.9	<4.8	<5.3 <5.3
4-Nitroaniline			3.8		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
4-Nitrophenol					<25	<25	<25	<24	<25	<25	<25	<24	<24	<25	<24	<24	<25	<24	<26
Acetophenone			1900		<5	<5 45	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Atrazine Benzaldehyde			3 19		<5 <25	<5 <25	<4.9 <25	<4.8 <24	<5 <25	<5 <25	<4.9 <25	<4.8 <24	<4.8 <24	<4.9 <25	<4.9 <24	<4.8 <24	<4.9 <25	<4.8 <24	<5.3 <26
Bis(2-chloroethoxy)methane			59		<5J	<5 J	<4.9	<4.8	<5	<5 J	<4.9 J	<4.8	<4.8	<4.9 J	<4.9	<4.8	<4.9	<4.8	<5.3
Bis(2-chloroethyl)ether	8.4	37	0.014	0.3	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
bis(2-Chloroisopropyl)ether			710	1400	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Bis(2-ethylhexyl)phthalate			6	12	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9 J	<4.8	<4.9	<4.8	<5.3
Butyl Benzyl Phthalate Caprolactam			16 9900	1500	<5 <10	<5 <10	<4.9 <9.8	<4.8 <9.6	<5 <10	<5 <10	<4.9 <9.8	<4.8 <9.6	<4.8 <9.6	<4.9 <9.8	<4.9 <9.7	<4.8 <9.6	<4.9 <9.8	<4.8 <9.6	<5.3 <11
Carbazole					<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Dibenzofuran			7.9		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Diethyl Phthalate			15000	17000	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Dimethyl Phthalate				270000	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3

					1			1	1	1	1	1		1					
	USEPA	USEPA																	
	Residential	Industrial																	
	Groundwater	Groundwater	USEPA																
	Concentration for	Concentration for	MCL or June 2017	April 2016	MW-20D	MW-20S	MW-21S	MW-22S	MW-23S	RA-10D	RA-10S	S-40D	S-40S	S-41D	S-41S	S-42D	S-42S	S-43D	S-43S
Parameter	Vapor Intrusion	Vapor Intrusion	Tap Water RSL	PRWQS1	3/8/2017	3/8/2017	3/6/2017	3/6/2017	3/6/2017	3/8/2017	3/8/2017	3/15/2017	3/15/2017	3/9/2017	3/9/2017	3/7/2017	3/7/2017	3/7/2017	3/7/2017
Di-n-butyl Phthalate			900	2000	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Di-n-octyl Phthalate			200		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Hexachlorobenzene	0.058	0.25	1	0.0028	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Hexachlorocyclopentadiene	0.042	0.18	50	40	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Hexachloroethane	1.1	4.8	0.33	14	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Isophorone			78	350	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Nitrobenzene	50	220	0.14	17	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
N-Nitrosodi-n-propylamine			0.011	0.05	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
N-Nitrosodiphenylamine			12		<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9	<4.9	<4.8	<4.9	<4.8	<5.3
Pentachlorophenol			1	1	<25	<25	<25	<24	<25	<25	<25	<24	<24	<25	<24	<24	<25	<24	<26
Phenol			5800	10000	<5	<5	<4.9	<4.8	<5	<5	<4.9	<4.8	<4.8	<4.9 J	<4.9 J	<4.8	<4.9	<4.8	<5.3
							Organochlor	ine Pesticides A	nalytical Result:	(ug/L)									
4,4'-DDD			0.032		<0.08	<0.08	<0.02	<0.02	< 0.019	< 0.074	< 0.077	<0.08	<0.08	<0.08	<0.08	< 0.019	< 0.019	<0.02	<0.08
4,4'-DDE	9.9		0.046		<0.08	<0.08	<0.02	0.01 J	< 0.019	< 0.074	< 0.077	<0.08	<0.08	<0.08	<0.08	< 0.019	< 0.019	< 0.02	<0.08
4,4'-DDT			0.23	0.0022	<0.08	<0.08	<0.02 J	0.085	<0.019	< 0.074	< 0.077	<0.08	<0.08	<0.08	<0.08	< 0.019	< 0.019	<0.02	<0.08
Aldrin	0.19	0.85	0.00092	0.00049	<0.04	< 0.04	<0.01	<0.01	< 0.0095	< 0.037	<0.038	< 0.04	<0.04	< 0.04	<0.04	<0.0095	< 0.0097	<0.0098	< 0.04
alpha-BHC			0.0072		<0.04	< 0.04	<0.01	<0.01	<0.0095	< 0.037	<0.038	<0.04	<0.04	<0.04	<0.04	<0.0095	<0.0097	<0.0098	< 0.04
alpha-Chlordane ⁴			2	0.008	< 0.04	< 0.04	< 0.01	< 0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	< 0.0098	< 0.04
beta-BHC			0.025	0.091	< 0.04	< 0.04	< 0.01	< 0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	< 0.0098	< 0.04
delta-BHC					< 0.04	< 0.04	< 0.01	< 0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	0.0096 J	< 0.04
Dieldrin			0.0018	0.00052	< 0.04	< 0.04	< 0.01	< 0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	<0.0098	< 0.04
Endosulfan I ⁵			100	62	< 0.04	< 0.04	< 0.01	< 0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	0.0027 J	< 0.04
Endosulfan II ⁵			100	62	< 0.04	< 0.04	<0.01 J	< 0.042	< 0.0095	< 0.037	< 0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	0.0037 J	0.0025 J	< 0.04
Endosulfan Sulfate ⁶			100	62	<0.08	<0.08	<0.02	<0.02	< 0.019	< 0.074	< 0.077	<0.08	<0.08	<0.08	<0.08	< 0.019	0.0022 J	0.03	0.032 J
Endrin			2	0.059	<0.08	<0.08	< 0.02	< 0.02	< 0.019	< 0.074	< 0.077	< 0.08	<0.08	<0.08	<0.08	< 0.019	< 0.019	0.0047 J	<0.08
Endrin Aldehyde				0.29	<0.08	<0.08	<0.02	<0.02	< 0.019	< 0.074	< 0.077	0.021 J	0.027 J	<0.08	<0.08	< 0.019	< 0.019	< 0.02	<0.08
Endrin Ketone					<0.08	<0.08	<0.02	<0.02	< 0.019	< 0.074	< 0.077	<0.08	<0.08 J	<0.08	<0.08	< 0.019	< 0.019	< 0.02	<0.08
gamma-BHC (Lindane)			0.2		< 0.04	< 0.04	< 0.01	<0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	<0.04	<0.04	< 0.0095	< 0.0097	<0.0098	< 0.04
gamma-Chlordane ⁴			2	0.008	<0.04	< 0.04	<0.01	<0.01	<0.0095	< 0.037	<0.038	<0.04 J	<0.04	<0.04	<0.04	<0.0095	< 0.0097	<0.0098	<0.04
Heptachlor	0.11	0.49	0.4	0.00079	< 0.04	< 0.04	< 0.01	<0.01	< 0.0095	< 0.037	<0.038	< 0.04	< 0.04	< 0.04	< 0.04	< 0.0095	< 0.0097	<0.0098	< 0.04
Heptachlor Epoxide	0.7	3.1	0.2	0.00039	< 0.04	< 0.04	< 0.01	<0.01	< 0.0095	< 0.037	< 0.038	< 0.04	< 0.04	<0.04	< 0.04	< 0.0095	< 0.0097	<0.0098	< 0.04
Methoxychlor			40	40	<0.08	<0.08	<0.02	<0.02	< 0.019	< 0.074	< 0.077	<0.08	<0.08	<0.08	<0.08	< 0.019	< 0.019	<0.02	<0.08
Toxaphene			3	0.0028	<2	<2	<0.5	<0.5	< 0.48	<1.9	<1.9	<2	<2	<2	<2	<0.48	< 0.49	< 0.49	<2
Notes:	*	•	•																-

Notes:

¹ April 2016 Puerto Rico Water Quality Standards Regulation for Class SG groundwater.

² USEPA screening level and PRWQS are for 1,3-Dichloropropene. The USEPA and PREQB have not specifically established screening levels for cis-1,3-Dichloropropene or trans-1,3-Dichloropropene.

³ The Tapwater screening level applied to 3&4-Methylphenol is the screening level for 3-Methylphenol. This is a conservative level; it is lower than the screening level for 4-Methylphenol.

4 USEPA screening level and PRWQS is for Chlordane. The USEPA and PREQB has not specifically established a screening level for alpha-Chlordane or gamma-Chlordane.

SUSEPA screening level and PRWQS is for Endosulfan. USEPA and PREQB has not specifically established a screening level for Endosulfan-I and Endosulfan-II.

⁶ USEPA screening level is for Endosulfan. USEPA has not specifically established a screening level for Endosulfan Sulfate.

--- USEPA and/or PREQB have not developed a screening level for this compound.

Detected values are shown in bold.

Values which exceed a Drinking Water Quality Standard (USEPA MCL, USEPA Tapwater RSL, PRWQS) and/or a USEPA Groundwater Concentration for Vapor Intrusion are shown highlighted yellow. Sample results with elevated reporting limits, due to sample dilution from the presence of other target compounds, that are above USEPA and PREQB groundwater action levels are shaded gray.

J - Indicates an estimated value.

Table 6
Release Assessment Phase 2A Groundwater Analytical Results - March 2017

		1											1				
																	1
	USEPA	USEPA															i
	Residential	Industrial															i l
	Groundwater	Groundwater	USEPA														i l
	Concentration for	Concentration for	MCL or June 2017	April 2016	OSMW-1D	OSMW-1S	OSMW-2D	OSMW-2S	OSMW-3D	OSMW-3S	OSMW-4D	OSMW-4S	OSMW-5D	OSMW-5D DUP	OSMW-5S	OSMW-6D	OSMW-6S
Parameter	Vapor Intrusion	Vapor Intrusion	Tap Water RSL	PRWQS ¹	3/1/2017	3/1/2017	3/2/2017	3/2/2017	3/2/2017	3/2/2017	3/3/2017	3/3/2017	3/3/2017	3/3/2017	3/3/2017	3/6/2017	3/6/2017
						Volatile Org	anic Compound	s Analytical Res	ults (ug/L)								
1,2-Dichloroethane	1.8	7.8	5	3.8	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
1,4-Dioxane	2200	9600	0.46		795	791	24.6	28	2.6	2.4	21.5 J	29.6	51.7	54.8	58.9	1.8	0.72
Benzene	1.3	5.6	5	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chloroform	0.66	2.9	8	57	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	6	25	200		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Hexachlorobutadiene	0.21	0.93	0.14	4.4	<2	<2	<2	<2	<2	<2	NA	NA	NA	NA	NA	NA	NA
Methyl Tert Butyl Ether	370	1600	14	14	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
tert-Amyl Alcohol	4100	17000	6.3		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Vinyl Chloride	0.13	2.1	2	0.25	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
						Polycyclic Aron	natic Hydrocarb	ons Analytical R	esults (ug/L)								
Benzo(a)anthracene			0.03	0.038	< 0.19	< 0.19	< 0.19	<0.2	< 0.19	< 0.19	<0.2	< 0.19	< 0.19	<0.2	<0.2	< 0.19	< 0.19
Naphthalene	3.2	14	0.17	0.17	< 0.95	< 0.96	< 0.95	<0.98	< 0.96	< 0.95	<0.98	< 0.96	< 0.96	<1	<1	< 0.95	< 0.95
						Volatile Petro	leum Hydrocarb	ons Analytical R	esults (ug/L)								
C9-C10 Aromatics (Unadj.)			5.5		<100	<100 J	<100	<100	<100	<100	<100 J	<100	<100	<100	<100	<100	<100
						Extractable Peti	oleum Hydrocai	rbons Analytical	Results (ug/L)								
C11-C22 Aromatics (Unadj.)			5.5		<200	<200	<200	<200	<190	<200	<190	<190	<190	<200	<200	<200	<200
						Semivolatile C	Organic Compou	nds Analytical R	esults (ug/L)								
Benzaldehyde			19		<24	<24	<24	<25	<24	<24	<25	<24	<24	<25	<25	<24	<24
Bis(2-ethylhexyl)phthalate			6	12	<4.8	<4.8	<4.8	<4.9	<4.8	<4.8	<4.9	<4.8	<4.8	<5	<5	<4.8	<4.8
				•	•	Organochi	orine Pesticides	Analytical Resu	lts (ug/L)				•	•	•		
Dieldrin			0.0018	0.00052	< 0.0095	< 0.0095	< 0.01	< 0.01	< 0.0095	< 0.0098	< 0.038	< 0.04	< 0.042	< 0.04	< 0.04	< 0.01	< 0.01

Notes:

¹ April 2016 Puerto Rico Water Quality Standards Regulation for Class SG groundwater.

--- USEPA and/or PREQB have not developed a screening level for this compound.

Detected values are shown in bold.

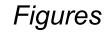
Values which exceed a Drinking Water Quality Standard (USEPA MCL, USEPA Tapwater RSL, PRWQS) and/or a USEPA Groundwater Concentration for Vapor Intrusion are shown highlighted yellow.

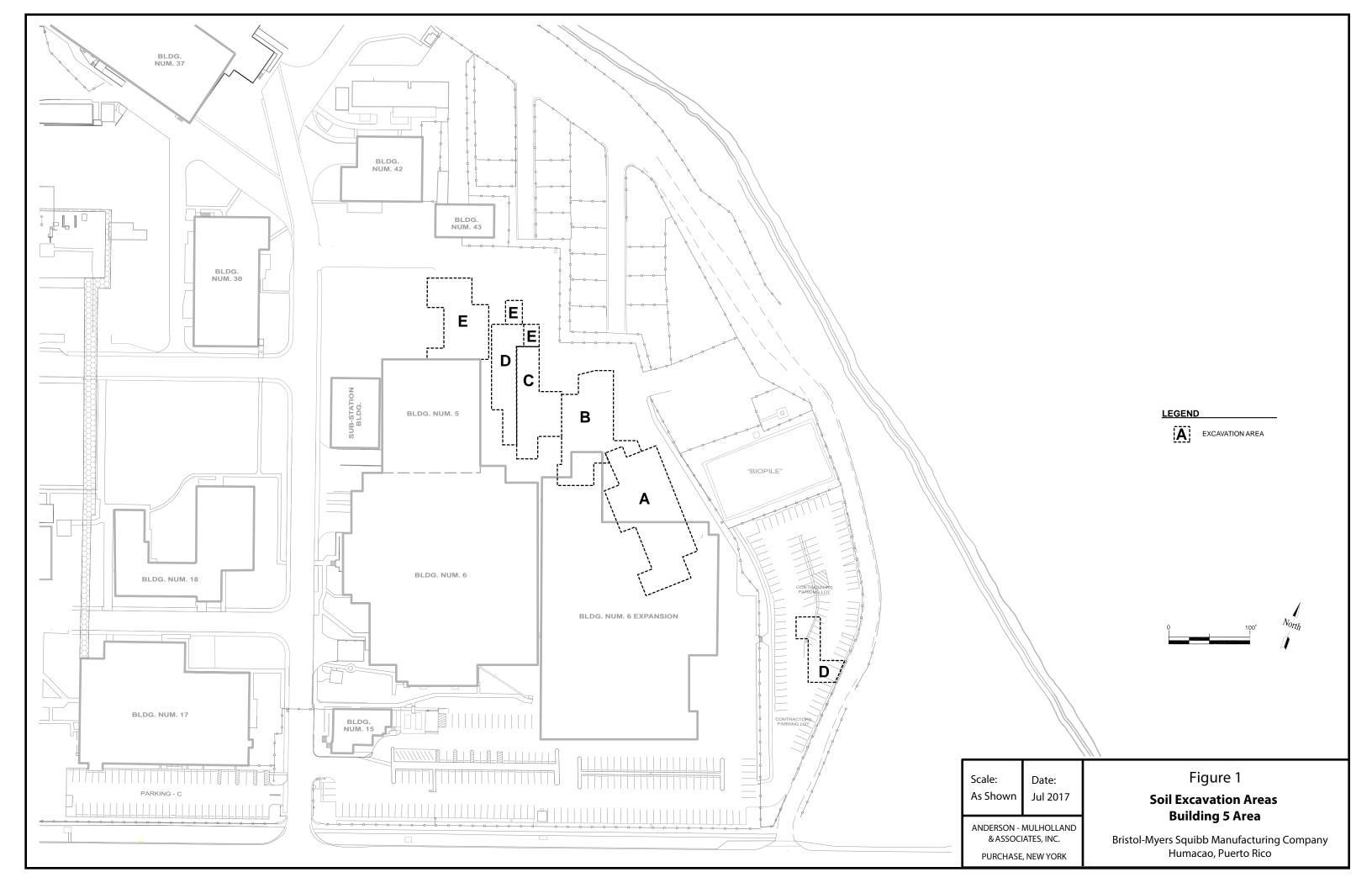
Sample results with elevated reporting limits, due to sample dilution from the presence of other target compounds, that are above USEPA and PREQB groundwater action levels are shaded gray.

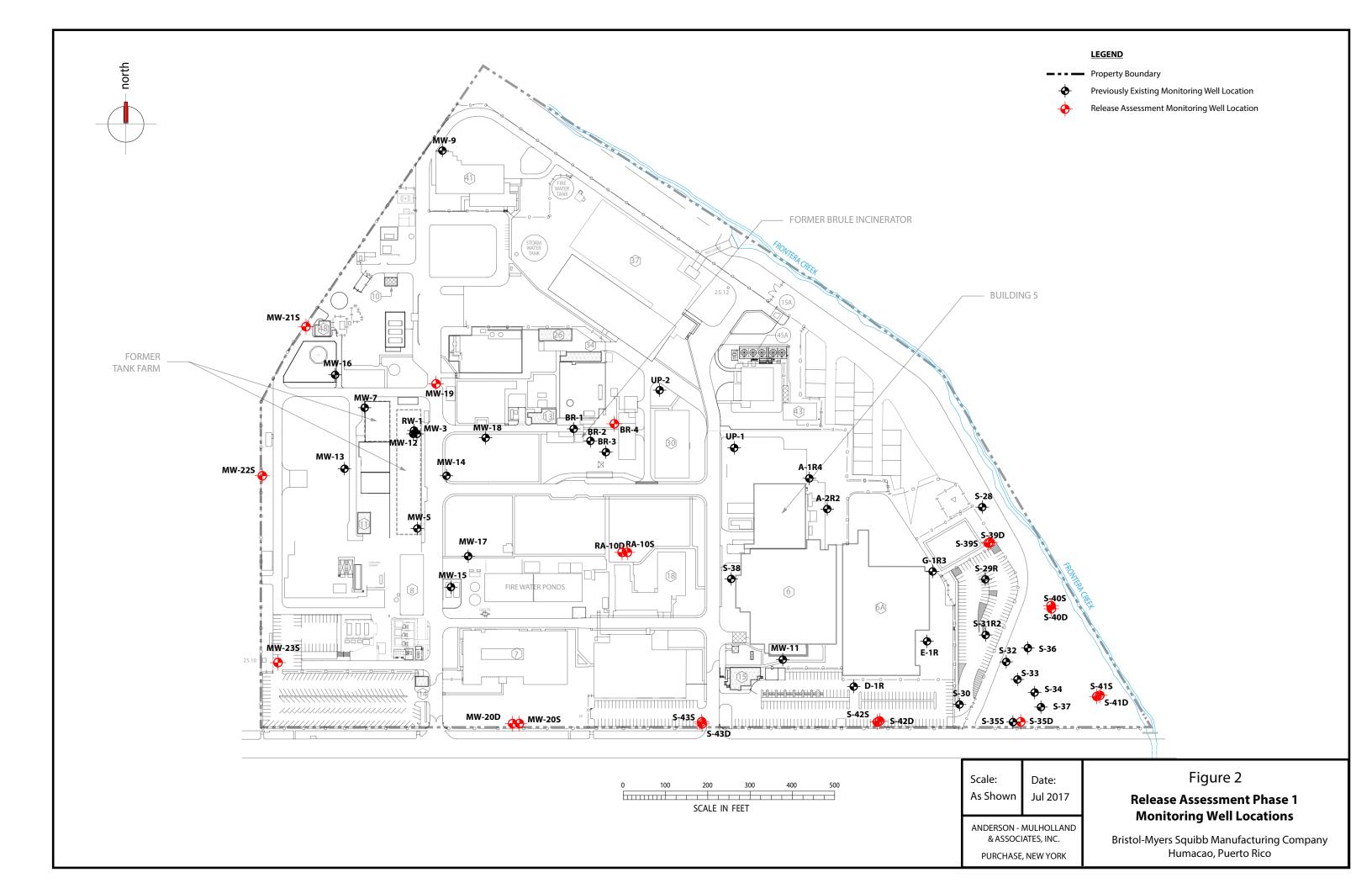
J - Indicates an estimated value.

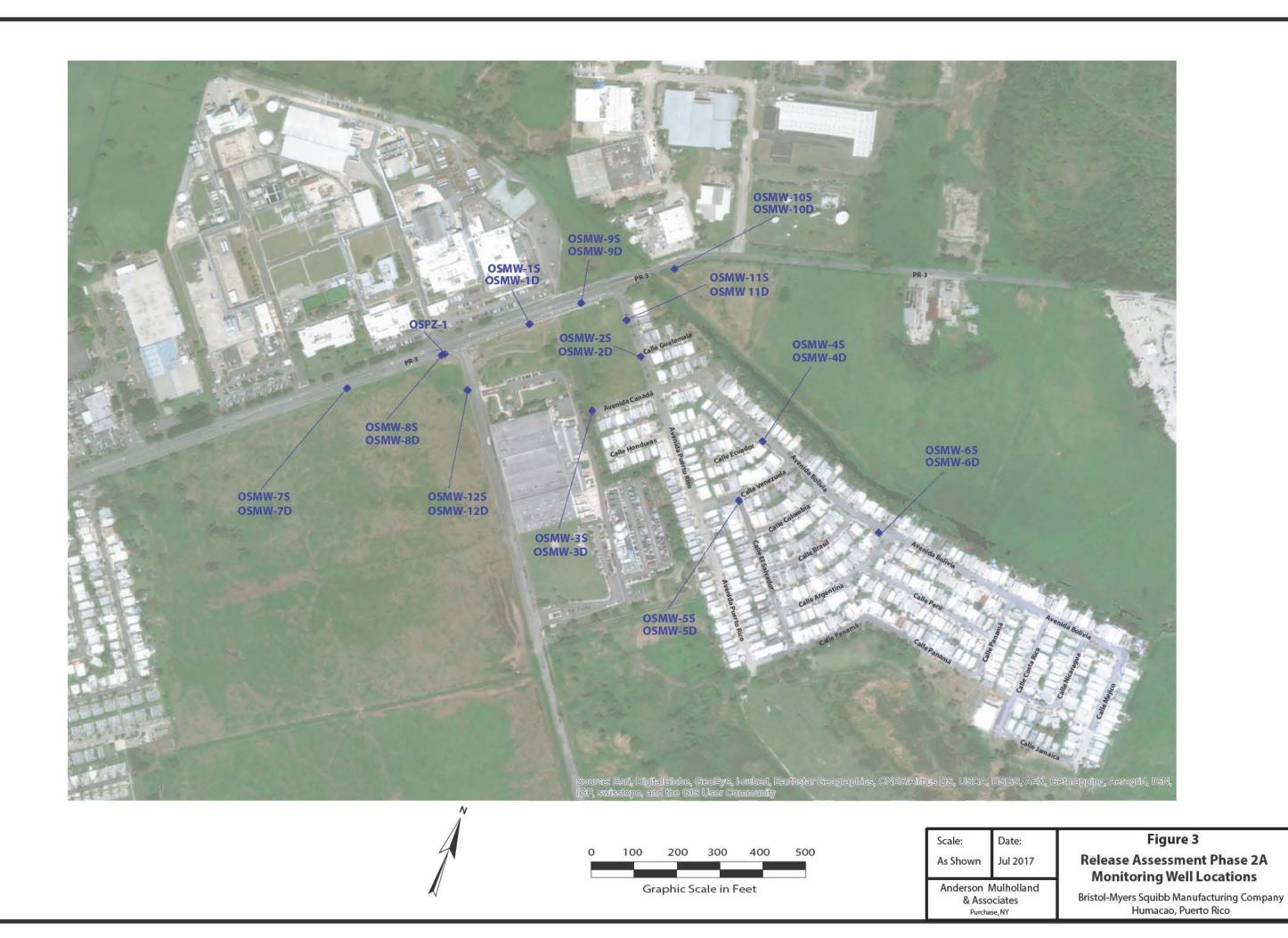
NA - Sample was not analyzed for this parameter.

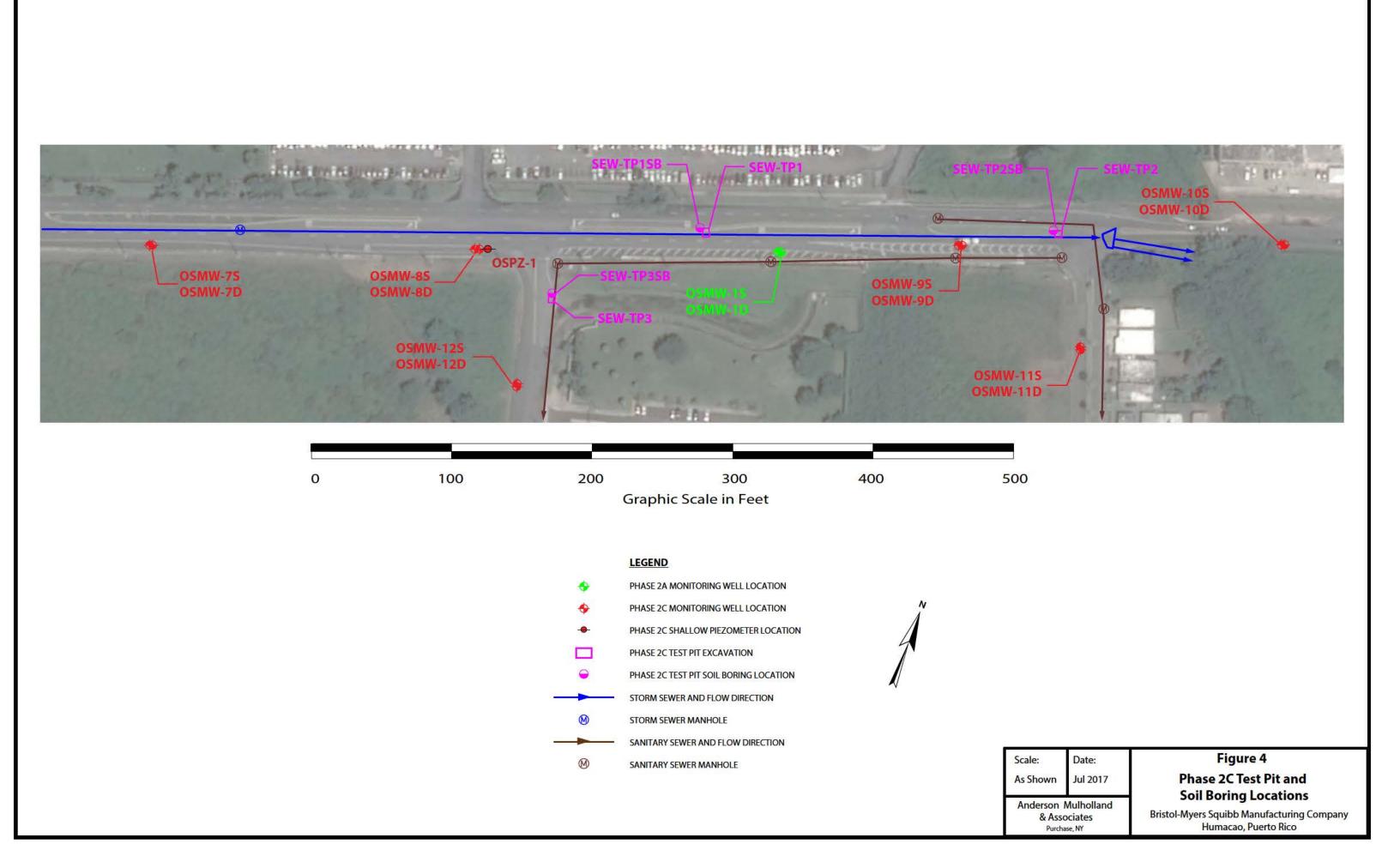
Table 7
Phase 2C In-Situ Groundwater Analytical Results

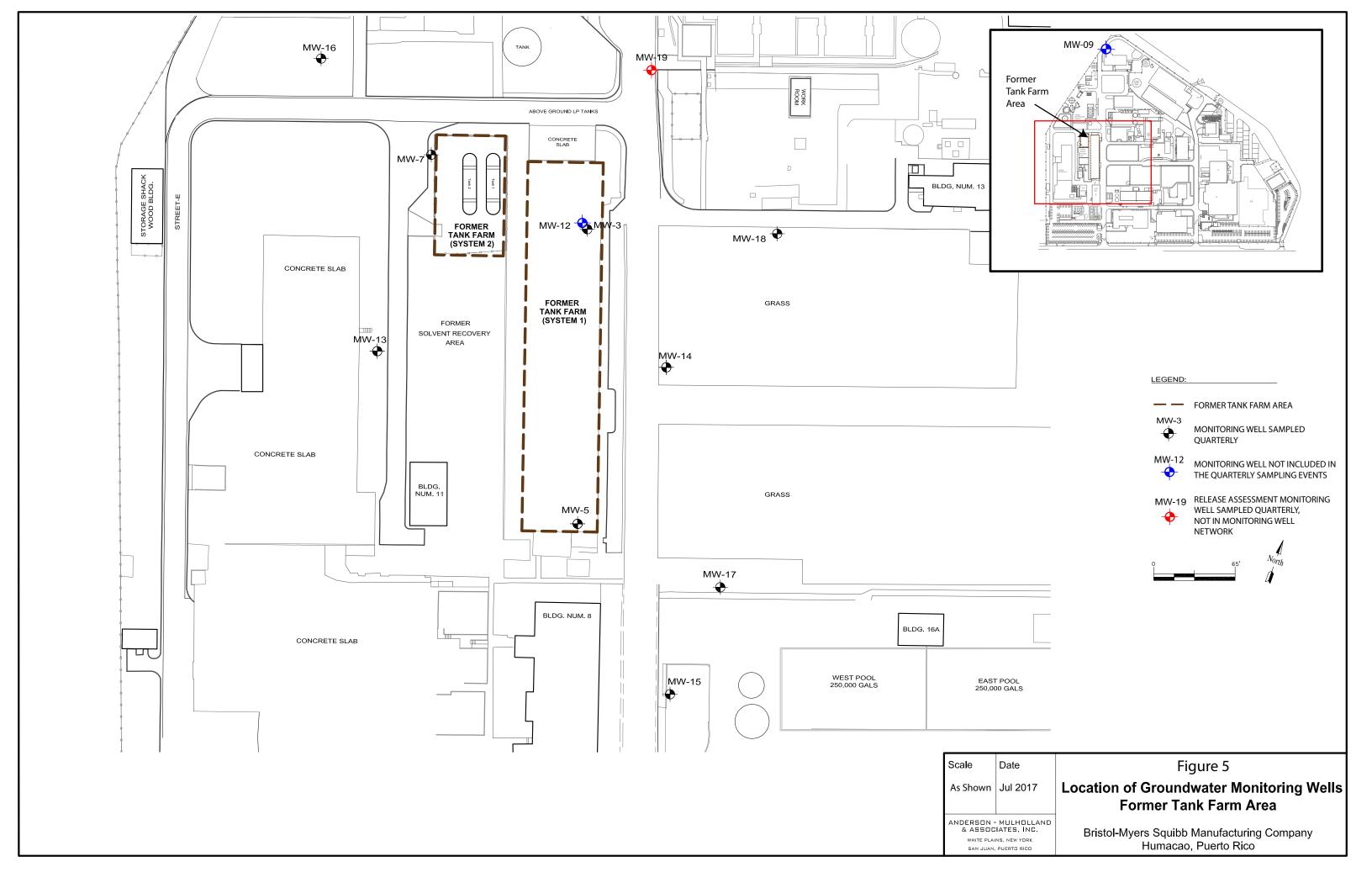

Groundwater <i>i</i>	Action Level (ug/l)	1,4-Dioxane Concentration
	JSEPA MCL or June 2017 Tap Water RSL	0.46
	April 2016 PRWQS ¹	
USEPA Residential Groundy	vater Concentration for Vapor Intrusion	2200
USEPA Industrial Groundy	vater Concentration for Vapor Intrusion	9600
Sample ID	Sample Date	Sample Result (ug/L)
SEWTP-1GW	5/3/2017	186
SEWTP-1GW DUP	5/3/2017	172
SEWTP-2GW	5/11/2017	90.7
SEWTP-3GW	4/27/2017	11.4

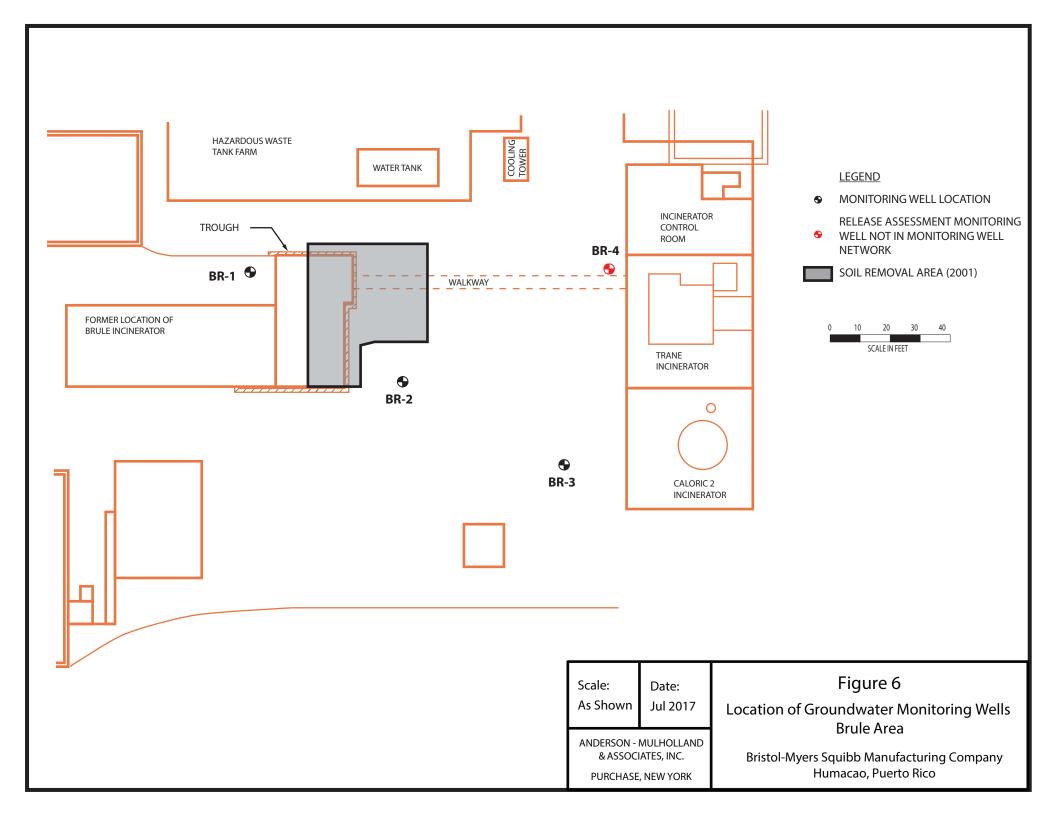

Notes:

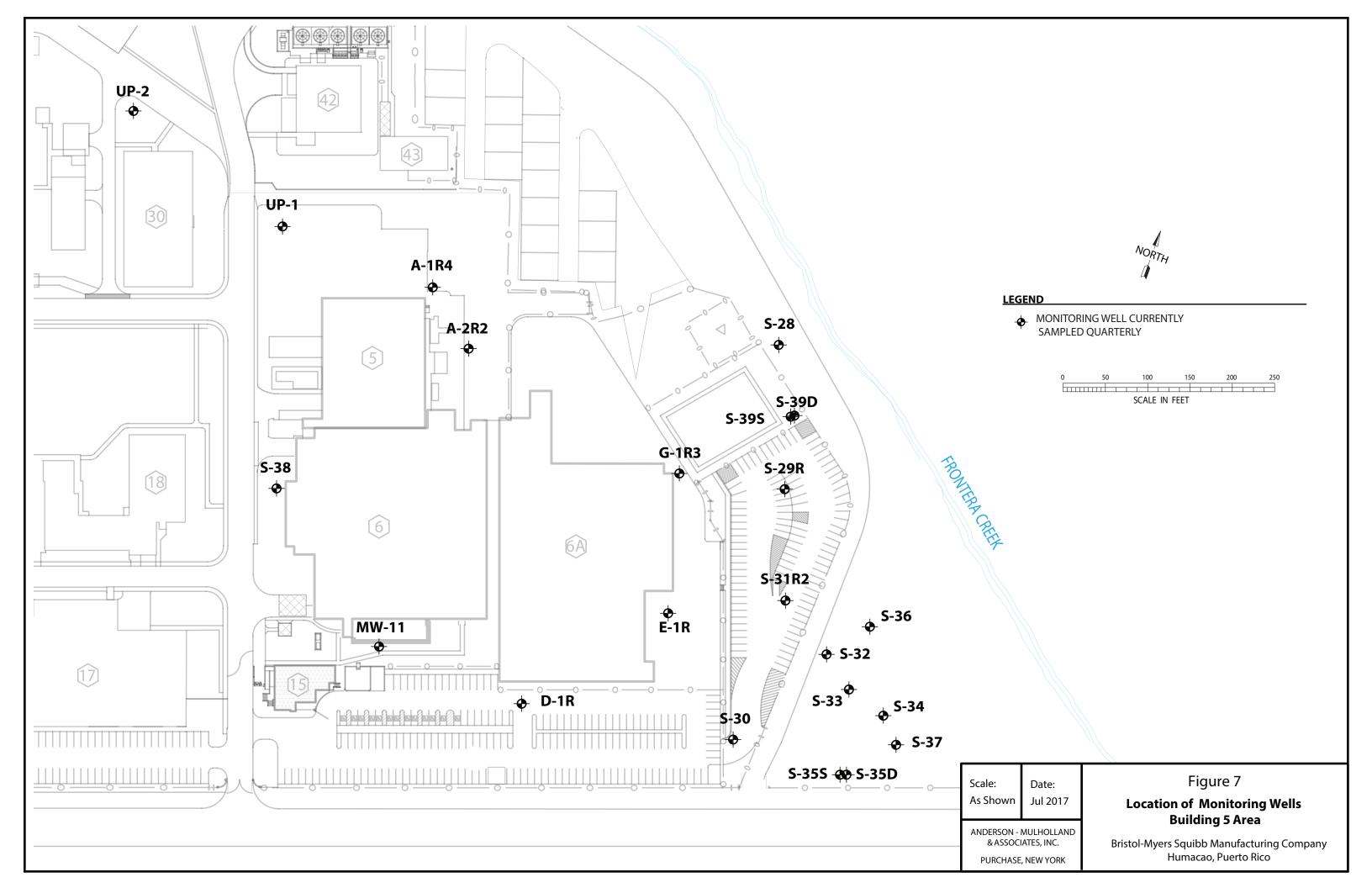

Values which exceed a Drinking Water Quality Standard (USEPA MCL, USEPA Tapwater RSL, PRWQS) and/or a USEPA Groundwater Concentration for Vapor Intrusion are shown highlighted yellow.


 $^{^{}m 1}$ April 2016 Puerto Rico Water Quality Standards Regulation for Class SG groundwater.


⁻⁻⁻ USEPA and/or PREQB have not developed a screening level for this compound.







Attachments (on CD)

Attachment A

1st Quarter 2017 Groundwater Analytical Results and Data Validation Reports

Attachment B

1st Quarter 2017 Groundwater Field Data Sheets

Attachment C

Phase 2C Soil Boring Logs and Monitoring Well Construction Details

	oject				ssess	ment Phase 2C: Potential Pr	referential Pathway Evaluation	OSN	<u>/IW-7D</u>	Pg. <u>1</u> of <u>2</u>
Loc	ation:		Humacad	<u>o, PR</u>		Drilling Co:	<u>GET</u>		Completed:	<u>4/11/2017</u>
Maa	D#/ E	'l a /#	*1\. TO	0/16 67		Drilling Method:	Direct Push/Hollow Stem Auger		Started:	4/11/2017
			t amsl): <u>TO</u> amsl): <u>17.</u> 0		,	Sampler / Drop: Borehole Dia:	Macrocore	Logge	a by: wed by:	Roselynn Stuart Terry Taylor
		JV (<u> 17.0</u>	<u> </u>		Dolenole Dia.	<u>7.25"</u>	TICVIC		Terry Taylor
DEPTH (ft)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL [DESCRIPTION		WE	ELL
0										
						(0.0-1.0') Asphalt.				1
	0.0		12/12"							
	0.0					(1.0-3.0') FILL: dark gray fin no staining.	e sand, some silt, little gravel, trace cobble	e, no odor,		
-	0.0		12/12"			Staning.				
	0.0		12/12"							
+	0.0					(3.0-5.0') FILL: vellowish bro	own clay with trace sand and pebbles, mot	tlad		
	0.0		12/12"			slightly moist, no odor, no st	taining.	iicu,		
-4	0.0									
	0.0		12/12"							
	0.0					(5.0-7.75') CLAY, some mot moist, no odor, no staining.	ttled sand, orange brown and bluish gray, i	medium,		
	0.0					moist, no odor, no stanning.				
	0.0			CL						(Palau TOC 121)
-	0.0									(Below TOC-13') Grout Cement with 3% bentonite
	0.0		44/60"							
-8	0.0			SP		(7.75-8.5') SAND, fine, few s	silt, gray to rose, moist, no odor, no stainin	g.	^ ^	
						(8.5-10.0') No recovery.				(TOC-17') 2-inch ID Sch 40 PVC Riser
-	0.0				· · · ·					
	0.0					(10.0-12.5') SAND, medium no odor, no staining.	to coarse, moderately graded, gray, wet a	t 11.0 ft,		
-	0.0			sw						
	0.0									
-12	0.0									
	0.0		36/60"	SM		(12.5-13.0') SAND, fine, son	ne silt, gray, moist, no odor, no staining.			
	0.0					(13.0-15.0') No recovery.				
	0.0									(13-15') Bentonite
	0.0									seal
	0.0									

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	11.0 ft bgl	Water Level: 3.5 ft btc

	Loc	oject ation:		BMS Rel Humacac t amsl): TO	<u>, PR</u>		ment Phase 2C: Potential Prefer Drilling Co: Drilling Method: Sampler / Drop:	rential Pathway Evaluation GET Direct Push/Hollow Stem Auger Macrocore			Pg. <u>2</u> of <u>2</u> <u>4/11/2017</u> <u>4/11/2017</u> <u>Roselynn Stuart</u>
G	iroui	nd Ele	v (ft	amsl): <u>17.0</u>	<u>)1</u>		Borehole Dia:	<u>7.25"</u>	Review		Terry Taylor
(#) 	(וו)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL DESC	CRIPTION		WE	LL
-16		0.0 0.0 0.0 0.0			SW		(15.0-17.0') SAND, fine to coars	se, well sorted, gray, wet, no odor, no stain	ning.		
	_			24/60"			(17.0-20.0') No recovery.				(15-22') 20/30 Sand Pack (17-22') Screen, 2- inch ID Sch 40 PVC, 0.020" slot size
-20	_	0.0			SM		(20.0-21.0') SAND, fine, some s	silt, gray, wet, no odor, no staining.			
	-	0.0 0.0 0.0 0.0		60/60"	ML		(21.0-23.0') SILT with very fine	sand, slightly moist, no odor, no staining.			(22') Bottom
-24	_	0.0 0.0 0.0 0.0			CL		(23.0-25.0') CLAY, bluish gray a odor, no staining. (25.0') End of boring.	and brown mottled clay with sand (fine), d	ry, no	<u></u>	

	oject ation:		BMS Rele Humacao		ssess	ment Phase 2C: Potential Pro	eferential Pathway Evaluation <u>GET</u>		MW-7S Completed:	Pg. <u>1</u> of <u>1</u>
	D./ E	1 //	 	0/46 77		Drilling Method:	Direct Push/Hollow Stem Auger		Started:	<u>4/11/2017</u>
			t amsl): <u>TO0</u> amsl): <u>17.0</u>			Sampler / Drop: Borehole Dia:	Macrocore	Logge Reviev	d by: ved by:	Roselynn Stuart Terry Taylor
				<u>-</u>		Boronoic Bla.	<u>7.25"</u>			1011 y 14 y 101
DEPTH (ft)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL D	DESCRIPTION		WE	ELL
0										
	0.0		12/12"			(0.0-1.0') ASPHALT			^ ^	
-	0.0		12/12"			(1.0-3.0') FILL: dark gray fine no staining.	e sand, some silt, little gravel, trace cobbl	e, no odor,		
-	0.0									
	0.0		12/12"			(3.0-5.0') FILL: yellowish bro	own clay with trace sand and pebbles, mo	ttled,		(Below TOC-5') Grout Cement with 3% bentonite
-4	0.0		12/12"			slightly moist, no odor, no sta	aining.		^ ^	
	0.0		12/12"						^ ^ ^ ^ ^ ^	(TOC-9') 2-inch ID Sch 40 PVC Riser
	0.0					(5.0-7.75') CLAY, some mott moist, no odor, no staining.	tled sand, orange brown and bluish gray,	medium,		
	0.0			CL						(5-7') Bentonite seal
-	0.0		44/2011							
-8-	0.0		44/60"	SP		(7.75-8.5') SAND, fine, few s	silt, gray to rose, moist, no odor, no stainin	ng.		
_						(8.5-10.0') No recovery.				
	0.0					(10.0-12.5') SAND, medium no odor, no staining.	to coarse, moderately graded, gray, wet a	at 11.0 ft,		(7-14') 20/30 Sand Pack
-	0.0			SW						(9-14') Screen, 2-inch ID Sch 40 PVC,
-12 -	0.0		36/48"							0.020" slot size
	0.0			SM		(12.5-13.0') SAND, fine, som	ne silt, gray, moist, no odor, no staining.			
	0.0					(13.0-14.0') No recovery.				
	0.0									(14') Bottom
	0.0									(17) Бойон
_ '										

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:	
Environmental Consultants		
2700 Westchester Ave, Suite 417		
Purchase, NY 10577		
914-251-0400	Depth to Saturated Soil: 11.0 ft bgl	Water Level: 3.5 ft btc

Project: Location:		BMS Rel		sess	ment Phase 2C: Potential Pro	eferential Pathway Evaluation GET	OSMW-81	ed: <u>4/19/2017</u>	
Mea	s Pt/ E	lev (f	t amsl): TO	C/14.72		Drilling Method: Sampler / Drop:	Direct Push/Hollow Stem Auger	Date Started: Logged by:	4/19/2017 Roselynn Stuart
		,	amsl): <u>15.1</u>			Borehole Dia:	<u>Macrocore</u> 7.25"	Reviewed by:	Terry Taylor
PID (ppm) SAMPLES RECOVERY (in) USCS Symbol			GRAPHIC LOG	SOIL D	DESCRIPTION		WELL		
0									
	0.0					(0.0-1.0') Asphalt.			^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
_	0.0 0.0 0.0 0.0		49/60"			(1.0-3.25') FILL: gravel and ograded, strong cementation,	clay, with silt and sand, angular coarse to gray, dry.	fine, well	
	0.0			CL			silt, few sand, light bluish gray lenses, yell ency, medium plasticity, no odor, no stainir		A A A (Below TOC-7') Grout Cement with 3%
-4						(4.0-5.0') No recovery.			A bentonite A A
_	0.0 0.0 0.0			CL			silt, few sand, light bluish gray lenses, yell ency, medium plasticity, no odor, no stainir		\(\lambda \) \(
-	0.0			sc		(6.75-7.5') SAND with some brown, dry (wet at 7 ft bgs),	interlayered gray silty clay, weak cementa no odor, no staining.	ation,	
-8-	0.0		39/60"	CL		(7.5-8.25') CLAY with some odor, no staining.	sand, medium cementation, dusky red, dr	y, no	(7-9') Bentonite seal
_						(8.25-10.0') No recovery.			
	0.0			CL		(10.0-11.5') CLAY with some odor, no staining.	e sand, medium cementation, dusky red, d	lry, no	
-12 —	0.0					(11.5-12.0') CLAY with some staining.	e silt interlayered with little sand, gray, no	odor, no	
_	0.0		51/60"	SP		(12.25-13.25') SAND, poorly medium-grained, gray, dry, r	graded, subangular to subrounded, coars no odor, no staining.	se,	
	0.0			CL		(13.25-14.0') CLAY with silt, no odor, no staining.	medium plasticity, moist, medium stiff, blu	iish gray,	
_	0.0			SP		(14.0-15.75') SAND, subang poorly graded, gray, wet, no	ular coarse to subrounded, medium to der odor, no staining.	nse,	(9-21') 20/30 Sand Pack
-16	0.0				· · · · ·	(15.75-16.0') No recovery.			(11-21') Screen, 2-
-10	0.0			SM		(16.0-16.75') SAND with silt, consistency, trace organic m	medium to fine, subangular, gray, wet, matter, no odor, no staining.	edium	inch ID Sch 40 PVC, O.020" slot size
	0.0		60/60"	SP		(16.75-17.25') SAND, mediu graded, medium consistency	m-grained, subangular to subrounded, po y, no odor, no staining.	orly	
LIII SP								" '	'

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	7.0 ft bgl	Water Level: 3.8 ft btc

Project:		:	BMS Rel	ease As	sessi	ment Phase 2C: Potential Pre	ferential Pathway Evaluation	<u>OSN</u>	<u>1W-8D</u> Pg. <u>2</u> of <u>2</u>			
Lo	cation:		<u>Humacao</u>	<u>, PR</u>		Drilling Co:	<u>GET</u>	Date C	Completed:	<u>4/19/2017</u>		
						Drilling Method:	Direct Push/Hollow Stem Auger	Date S	started:	<u>4/19/2017</u>		
			t amsl): TOO			Sampler / Drop:	<u>Macrocore</u>	Logge		Roselynn Stuart		
Gro	und Ele	v (ft	amsl): <u>15.1</u>	<u>6</u>		Borehole Dia:	<u>7.25"</u>	Reviev	ved by:	Terry Taylor		
DEPTH (ft)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL DE	SOIL DESCRIPTION			WELL		
	0.0					(17.25-19.25') SAND, coarse, odor, no staining.	, subangular to subrounded, poorly graded	I, no				
-20 —						(19.25-20.0') No recovery.						
-24	0.0 0.0 0.0 0.0 0.0 0.0 0.0		42/60"	CL		(20.0-24.5') CLAY, very stiff, (grayish brown, no odor, no staining.			(21') Bottom		
						(24.5-25') No recovery.						
	0.0 0.0 0.0 0.0			ML		(25.0-27.25') SILT with some bluish gray and yellowish brown	clay and little sand, subangular to fine sar wn, low plasticity, moist, no odor, no staini	nd, light ng.				
	0.0		43/60"	CL		(27.25-28.0') CLAY, pale yello staining.	ow, very stiff, medium plasticity, dry, no od	or, no				
-28 —				SP		(28-28.5') SAND, medium, su odor, no staining.	bangular, loose, pale yellow, dry, subangu	ılar, no				
						(28.5-30.0') No recovery.						
-	0.0 0.0 0.0					(30.0-35.0') SAND with some to moderate cementation, pal	interlayered clay,coarse to fine, subangule e yellow, wet to moist, no odor, no staining	ar, weak J.				
-32 —	0.0			66								
-	0.0		60/60"	SC								
	0.0											
-	0.0											
-	0.0				<u>'/-'-/</u>	/ (35.0') End of boring.						
-36												
ANII	DEDEC	NI M		D 8. AC	6001	ATES INC Notes:						

ANDERSON MULHOLLAND & ASSOCIATES, INC.
Environmental Consultants
2700 Westchester Ave, Suite 417
Purchase, NY 10577
914-251-0400
Depth to Saturated Soil: 7.0 ft bgl Water Level: 3.8 ft btc

Project: Location:					ssess	ment Phase 2C: Potential Pr	ment Phase 2C: Potential Preferential Pathway Evaluation			Pg. <u>1</u> of <u>1</u>		
	_ocai	ion.		<u>Humacao</u>	<u>, PK</u>		Drilling Co: Drilling Method:	GET Direct Push/Hollow Stem Auger		completed:	<u>4/19/2017</u> <u>4/19/2017</u>	
Мє	eas P	Pt/ Ele	ev (f	t amsl): TO	C/14.87		Sampler / Drop: Macrocore		Logge		Roselynn Stuart	
Gr	ound	I Elev	/ (ft a	amsl): <u>15.1</u>	7		Borehole Dia:	<u>7.25"</u>	Reviev	ved by:	Terry Taylor	
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol GRAPHIC LOG				RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL E	DESCRIPTION		WELL		
0_												
		0.0					(0.0-1.0') Asphalt.			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Below TOC-1') Grout Cement with 3% bentonite	
_		0.0					(1.0-3.25') FILL: gravel and graded, strong cementation,	clay, with silt and sand, angular coarse to gray, dry.	fine, well		(1-2') Bentonite seal	
_		0.0									(TOC-3') 2-inch ID Sch 40 PVC Riser	
		0.0		49/60"								
-		0.0					(0.05.4.0)\		laåala			
		0.0			CL		brown, dry, medium consiste	silt, few sand, light bluish gray lenses, yel ency, medium plasticity, no odor, no staini	ng.			
-4							(4.0-5.0') No recovery.					
-		0.0					(5.0-6.75') CLAY with some brown, dry, medium consiste	silt, few sand, light bluish gray lenses, yel ency, medium plasticity, no odor, no staini	lowish ng.		(2-8') 20/30 Sand Pack	
		0.0			CL						(3-8') Screen, 2-inch ID Sch 40 PVC, 0.020" slot size	
		0.0		36/36"								
_		0.0			SC		(6.75-7.5') SAND with some brown, dry (wet at 7 ft bgs),	interlayered gray silty clay, weak cementa no odor, no staining.	ation,			
-8-		0.0			CL		(7.5-8.0') CLAY with some s no staining.	and, medium cementation, dusky red, dry	, no odor,		(8') Bottom	

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:	
Environmental Consultants		
2700 Westchester Ave, Suite 417		
Purchase, NY 10577		
914-251-0400	Depth to Saturated Soil: 7.0 ft bgl	Water Level: 3.8 ft btc

Project:			BMS Rel	ease As	ssess	ment Phase 2C Potential Pre	eferential Pathway Evaluation	<u>OSN</u>	<u>IW-9D</u>	Pg. <u>1</u> of <u>2</u>
Loc	cation:		Humacac	<u>, PR</u>		Drilling Co:	<u>GET</u>		ompleted:	<u>4/21/2017</u>
Mood	D+/ E	lov (f	t amsl): TO	C/1/1 EE		Drilling Method:	Direct Push/Hollow Stem Auger	Date S		4/21/2017
			amsl): <u>14.7</u>			Sampler / Drop: Borehole Dia:	Macrocore	Logged Review		Roselynn Stuart Terry Taylor
				<u>-</u> 		Boronole Bla.	<u>7.25"</u>			1011 4 14 101
			(in)	log	00					
.н. Т	(md	ES	ÆRY	Sym	10					
DEPTH (ft)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOII 1	DESCRIPTION		WE	ELL
		05	<u> </u>		0		JEOOTHI TION			
°						(0.0.4.0l) A. J. II			1	
						(0.0-1.0') Asphalt.				
-										
						(1.0-3.0') Concrete.				
-									^ ^	
-	0.0									
	0.0			CL		(3.0-4.0') CLAY with some s moist, stiff, medium plasticit	illt and trace sand, bluish gray and yellowis y, no odor, no staining.	sh brown,	^ ^	
-4	0.0				<u> </u>		•			
				SC	//. ///	(4.0-5.0') SAND, fine, mode moist, no odor, no staining.	rate cementation, some clay, yellowish bro	own,	^ ^	
	0.0									
	0.0					(5.0-6.75') CLAY with some dry, stiff, medium plasticity,	silt, few sand, light bluish gray and yellowi	sh brown,		
	0.0			CL		dry, still, modium plasticity,	no odor, no stanning.			
	0.0									(Below TOC-12') Grout Cement with
	0.0					(0.75.0.75l) OAND	and Property of the Pulse 29 day (color			3% bentonite
						no odor, no staining.	o medium, subangular, little silt, dry (wet a	τ 8.6 π.),	^ ^	
	0.0		45/60"	sw						
-8	0.0								^ ^	(TOC-16') 2-inch ID Sch 40 PVC Riser
-						(8.75-10.0') No recovery.				
						(10.0-10.25') SAND coarse	to fine, loose, subangular, weak cementati	on, some		
-	0.0			SM		silt, gray, dry, no odor, no st	aining.			
						(10.25-15.0') No recovery.			^ ^	
-										
									\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
-12 -										
			0.25/60"							
-										(12-14') Bentonite seal
										554
-										

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:
Environmental Consultants	
2700 Westchester Ave, Suite 417	
Purchase, NY 10577	
914-251-0400	Depth to Saturated Soil: 8.6 ft bgl Water Level: 4.6 ft btc

Project: Location:		BMS Rel		sess	essment Phase 2C Potential Preferential Pathway Evaluation Date Con				Pg. <u>2</u> of <u>2</u>	
200	auom.		Hamadad	<u>,, , , , , , , , , , , , , , , , , , ,</u>		Drilling Co: Drilling Method:	GET Direct Push/Hollow Stem Auger	Date C		<u>4/21/2017</u> <u>4/21/2017</u>
			t amsl): TO			Sampler / Drop:	<u>Macrocore</u>	Logge		Roselynn Stuart
Grou	nd Ele	ev (ft a	amsl): <u>14.7</u>	<u>'7</u>		Borehole Dia:	7.25"	Reviev	ved by:	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol						SOIL DES	SCRIPTION		WE	LL
ΓΙ	0.0			SM		(15.0-15.5') SAND, coarse, sub	bangular, some silt, gray, wet, odor, no s	taining.		
	0.0				· ·	(15.5-17.75') CLAY, some silt,	trace sand, dark bluish gray, moist, med		1 8	
-16	0.0					plasticity, no odor, no staining.				
	0.0			CL						
	0.0									
-	0.0		42/60"	SM			e interlayered silt, dark bluish gray, mois	, no		
					<u>: : </u>	odor, no staining. (18.5-20.0') No recovery.			1 1	
-						(10.5-20.0) No recovery.				
-20 —										(14-26') 20/30 Sand
	0.0					(20-23.75') CLAY, some silt, lit plasticity, no odor no staining.	tle sand, bluish gray, moist, soft, mediun Trace of organic matter.	1		(14-26') 20/30 Sand Pack
-	0.0						· ·			(16-26') Screen, 2- inch ID Sch 40 PVC,
	0.0									inch ID Sch 40 PVC, 0.020" slot size
-	0.0			CL						
	0.0		45/60"							
-	0.0									
	0.0									
-24 —						(23.75-25.0') No recovery.				
	0.0					(25.0-27.0') CLAY, trace sand, plasticity, medium to hard, no	dark bluish gray, moist, medium to high odor, no staining.			
	0.0			СН			-			(26') Bottom
	0.0									
	0.0				/.:/.	(07.0.00.05!\ 0.4NID	fine subsequier made and to store	ontation	-	
	0.0 39/60" SC					some clay, brownish yellow, w	fine, subangular, moderate to strong cen hite lenses, no odor, no staining.	ientation,		
-28 — 0.0										
-						(28.25-30.0') No recovery.				
						(30.0') End of boring.				

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	8.6 ft bgl	Water Level: 4.6 ft btc

				ease A	ssess	ement Phase 2C Potential Preferential Pathway Evaluation OSM			<u>1W-9S</u>	Pg. <u>1</u> of <u>1</u>
Loc	ation:		Humacao	<u>, PR</u>		Drilling Co. <u>GET</u>			•	4/21/2017
Meas	Pt/ Ele	ev (ft	amsl): TO	C/14.32		Drilling Method:	Direct Push/Hollow Stem Auger			4/21/2017 Roselynn Stuart
					-	Borehole Dia:	<u>Macrocore</u> 7.25"		-	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES SAMPLES GRAPHIC LOG GRAPHIC LOG							DESCRIPTION		WE	ELL
0										
						(0.0-1.0') Asphalt.				
_						(1.0-3.0') Concrete.				(Below TOC-3') Grout Cement with 3% bentonite
_	0.0			CL		(3.0-4.0') CLAY with some s moist, stiff, medium plasticit	silt and trace sand, bluish gray and yellowis ty, no odor, no staining.	sh brown,		(TOC-7') 2-inch ID Sch 40 PVC Riser
4	0.0			SC		(4.0-5.0') SAND, fine, mode moist, no odor, no staining.	erate cementation, some clay, yellowish bro	own,		(3-5') Bentonite seal
-	0.0			CL		(5.0-6.75') CLAY with some dry, stiff, medium plasticity,	silt, few sand, light bluish gray and yellow no odor, no staining.	ish brown,		
8	0.0		45/60"	sw		(6.75-8.75') SAND, coarse to no odor, no staining.	to medium, subangular, little silt, dry (wet a	t 8.6 ft.),		(5-12') 20/30 Sand
_					·····	(8.75-10.0') No recovery.				Pack (7-12') Screen, 2-inch
-	0.0			SM	<mark>∵ </mark> :-	silt, gray, dry, no odor, no s	to fine, loose, subangular, weak cementati taining.	on, some		(7-12) Subsett, 2-11611 ID Sch 40 PVC, 0.020" slot size
2 —			0.25/24"			(10.25-12.0') No recovery.				(12') Bottom
	Meas Grour (µ) HLd3O 0 - 44 88	Ground Elee (h) HLd3O 0	Meas Pt/ Elev (ft a ground Ele	Meas Pt/ Elev (ft amsl): TOO Ground Elev (ft amsl): 14.7 (u) ALAT (u) ALAT	Meas Pt/ Elev (ft amsl): TOC/14.32 Ground Elev (ft amsl): 14.77 (ii) HLddd (iii) All (iiii) All (iiiii) All (iiiii) All (iiiiii) All (iiiiiii) All (iiiiiiiii) All (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	Meas Pt/ Elev (ft amsl): TOC/14.32 Ground Elev (ft amsl): 14.77	Drilling Co: Drilling Method: Sampler / Drop: Borehole Dia:	Drilling Oc: GET Drilling Method: Direct Push-Hollow Stem Auger Macrocore Sampler / Drop: Macrocore Borehole Dia: 7.25" Common Elev (ft ams): 14.77 Double Dia: 7.25" Solit DESCRIPTION	Drilling Method: Drilling Method: Drilling Method: Drilling Method: Drilling Method: Drilling Method: Sampler / Drop: Macrocore Sampler / Drop: Macrocore Review Macrocore T.25" Macrocore Drilling Method: Drilling Drilling Method: Drilling Drill	Modes PV Elev (It ams): 10C:14.32 Date Started: Direct PushHollow Stem Auger Macrocore Sampler / Drop: Macrocore / Drop: Macro

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:	
Environmental Consultants		
2700 Westchester Ave, Suite 417		
Purchase, NY 10577		
914-251-0400	Depth to Saturated Soil: 8.6 ft bgl	Water Level: 4.6 ft btc

Project:		BMS Rel	lease A	ssess	ment Phase 2C Potential Prefer	ential Pathway Evaluation	OSMW-10D	Pg. <u>1</u> of <u>2</u>		
	Loc	ation:		Humacad	<u>, PR</u>		Drilling Co:	<u>GET</u>	Date Completed:	<u>4/13/2017</u>
							Drilling Method:	Direct Push/Hollow Stem Auger	Date Started:	<u>4/13/2017</u>
				t amsl): TO			Sampler / Drop:	Macrocore	Logged by:	Roselynn Stuart
	arou	nd Ele	v (ft	amsl): <u>13.5</u>	<u>58</u>		Borehole Dia:	<u>7.25"</u>	Reviewed by:	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol GRAPHIC LOG		GRAPHIC LOG	SOIL DES	CRIPTION	WE	ELL				
0						V / /			-10	
	_	0.0		12/12"			(0.0-3.0') CLAY, with some sand plasticity, no odor, no staining.	d, brown to yellowish brown, dry, medium Roots present.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
		0.0		12/12"	CL					
	_	0.0								
		0.0		12/12"						
		0.0					(3.0-5.0') SAND, fine, moderate dry, no odor, no staining.	cementation, some clay, light yellowish be	rown,	
-4	_	0.0		12/12"	sc					
		0.0		12/12"						
	-	0.0				<u>/ / /</u>		t, brown to reddish brown, dry, no odor, no		
	_	0.0					staining.			
		0.0			SP		(6.25-7.75') SAND, medium, bro	own to grayish brown, moist, no odor, no		(Below TOC-12') Grout Cement with 3% bentonite
	-	0.0					stailing.			
		0.0		36/60"			(7.75-8.0') SAND, fine, gray, mo	oist, no odor, no staining.		
-8							(8.0-10.0') No recovery.		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(TOC-16') 2-inch ID Sch 40 PVC Riser
	_									
		0.0				<u></u>	(10.0.11.2E)\ CAND first	ofine grow no oder no ote:		
		0.0			sw		(10.0-11.25) SAND, very line to	o fine, gray, no odor, no staining.		
	-	0.0				••••	(11 5 12 0'\ CANID madi:	pogreo wat gray no odor no staining		
-12		0.0			SP		(11.5-12.0) SAND, medium to 0	coarse, wet, gray, no odor, no staining.		
-		0.0					(12.0-12.5') No recovery.			
		0.0		45/60"	OL		(12.5-13.5') SILT, with organics	, gray, no odor, no staining.		(12-14') Bentonite

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	10.5 ft bgl	Water Level: 5.2 ft btc

Project: BMS Release Location: Humacao, PR				ssess	ment Phase 2C Potential Pref	Date C	MW-10D Completed:	Pg. <u>2</u> of <u>2</u> <u>4/13/2017</u>	
		(ft amsl): <u>TO(</u> t amsl): <u>13.5</u>			Drilling Method: Sampler / Drop: Borehole Dia:	<u>Direct Push/Hollow Stem Auger</u> <u>Macrocore</u> 7.25"	Logge	started: d by: ved by:	4/13/2017 Roselynn Stuart Terry Taylor
DEPTH (ft)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG	SOIL DE	ESCRIPTION		WE	LL
-20 - 0.0 -20 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0		27/60"	CL CL		(17.5-17.75') SAND, very fine (17.75-19.25') CLAY, with silt (19.25-20.0') No recovery.	nd very fine sand, no odor, no staining. e, with silt, wet, gray, no odor, no staining. and sand, soft, no odor, no staining. h brown with light bluish gray lenses, hard b.			seal (14-21') 20/30 Sand Pack (16-21') Screen, 2-inch ID Sch 40 PVC, 0.020" slot size (21') Bottom

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	10.5 ft bgl	Water Level: 5.2 ft btc

Project: BMS Release Ass Location: Humacao, PR		ssess	ment Phase 2C Potential Pref	ferential Pathway Evaluation GET	Date C	NW-10S completed:	Pg. <u>1</u> of <u>1</u> <u>4/13/2017</u>			
			t amsl): TO (Drilling Method: Sampler / Drop:	<u>Direct Push/Hollow Stem Auger</u> <u>Macrocore</u>	Logge		4/13/2017 Roselynn Stuart
Grou	nd Ele	ev (ft	amsl): <u>13.6</u>	<u>6</u>		Borehole Dia:	<u>7.25"</u>	Reviev	ved by:	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol					GRAPHIC LOG	SOIL DE	ESCRIPTION		WE	LL
0										
_	0.0		12/12"	CL		(0.0-3.0') CLAY, with some saplasticity, no odor no staining	and, brown to yellowish brown, dry, mediu p. Roots present.	im	×	
_	0.0		12/12"	OL.						(Below TOC-4') Grout Cement with 3% bentonite
_	0.0		12/12"			(3.0-5.0') SAND, fine, modera dry, no odor, no staining.	ate cementation, some clay, light yellowisl	n brown,		
-4	0.0		12/12"	SC						(TOC-8') 2-inch ID Sch 40 PVC Riser (4-6') Bentonite seal
_	0.0					(5.0-6.25') SAND, fine, trace staining.	silt, brown to reddish brown, dry, no odor,	no		
_	0.0		00/00"	SP		(6.25-7.75') SAND, medium, staining.	brown to grayish brown, moist, no odor, n	0		
-8-	0.0		36/60"			(7.75-8.0') SAND, fine, gray,	moist, no odor, no staining.	`		
_						(8.0-10.0') No recovery.				
										(6-13') 20/30 Sand Pack
_	0.0			SW		(10.0-11.25') SAND, very fine	e to fine, gray, no odor, no staining.			(8-13') Screen, 2-inch ID Sch 40 PVC, 0.020" slot size
-12	0.0		36/36"	SP			o coarse, wet, gray, no odor, no staining.			
				(12.0-12.5') No recovery.			4			
-				OL	1 1 1	(12.5-13.0') SILT, with organi	ics, gray, no odor, no staining.			(13') Bottom
L										

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil:	10.5 ft bgl	Water Level: 5.2 ft btc

- · · · · · · · · · · · · · · · · · · ·				ssess	ment Phase 2C Potential Prefe	essment Phase 2C Potential Preferential Pathway Evaluation OSM				
Location: <u>Humacao, PR</u>			Drilling Co:	<u>GET</u>	Date Cor	mpleted:	<u>4/17/2017</u>			
	D./ E	Pt/ Elev (ft amsl): TOC/14.60				Drilling Method:	Direct Push/Hollow Stem Auger	Date Sta		4/17/2017
						Sampler / Drop:	<u>Macrocore</u>	Logged b		Roselynn Stuart
Grou	na Ele	·V (IL &	amsl): <u>14.8</u>	<u>51</u>		Borehole Dia:	<u>7.25"</u>	Reviewe	a by:	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol GRAPHIC LOG				USCS Symbol	GRAPHIC LOG	SOIL DE	SCRIPTION		WEL	.L
0										
						(0.0-0.25') Asphalt/concrete.				
	0.0		12/12"). ()	(0.25-4.0') FILL: clay with fine	sand, grayish brown, dry, medium to stiff	f, medium		
	0.0					plasticity, no odor, no staining				
	0.0		12/12"							
	0.0		10/10"		<u>: </u>					
	0.0		12/12"							
	0.0		12/12"							
-4-	0.0		12/12							
	0.0		12/12"			(4.0-7.75') CLAY, some silt, fe lenses, dry (silt/sand wet at 7.	ew sand, brownish yellow with light bluish 1 ft), medium plasticity, no odor, no stain	gray ing.		
-	0.0								^ ^	
	0.0									
-	0.0			CL					^ ^	
	0.0									
-	0.0								^ ^	
	0.0		42/60"							
-8-	0.0			SP		(7.75-8.5') SAND, coarse, sub red lenses, wet, no odor, no s	pangular to subrounded, light brownish ye taining.	ellow with		
	0.0					(8.5-10.0') No recovery.				
										(Below TOC-18') Grout Cement with 3% bentonite
	0.0								^ ^	3 % Defilorate
	0.0					(10.0-11.5') SAND, coarse, su with red lenses, wet, no odor,	bangular to subrounded, light brownish y no staining.	rellow		
-	0.0			SP					^ ^	(TOC-22') 2-inch ID
	0.0					(11 E 12 2E) CAND 22222 2	subrounded, gray, wet, no odor, no stainii			Sch 40 PVC Riser
-12 —	0.0					(11.5-12.25) SAND, coarse, s	subrounded, gray, wer, no odor, no stainii	ig.		
	0.0		60/60"			(12.25-13.5') SILT, gray, mois staining.	t, very stiff, low to medium plasticity, no c	odor, no		
	0.0			ML		Julius San				
	0.0						layered sand, gray, moist, low plasticity,	no odor,	^ ^ ^ ^	
	0.0					no staining.			^ ^	
	0.0								^ ^ ^ ^	
	0.0			CL		(15.0-17.5') CLAY, some silt a plasticity, no odor, no staining	and little sand, gray, moist, low to medium	ı	^ ^	
						plasticity, 110 odol, 110 stallling	•		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
-16										
			JLHOLLAN	D & AS	SOCI	ATES, INC. Notes:				

ANDERSON MULHOLLAND & ASSOCIATES, INC.
Environmental Consultants
2700 Westchester Ave, Suite 417
Purchase, NY 10577
914-251-0400
Depth to Saturated Soil: 7.0 ft bgl Water Level: 5.5 ft btc

Project: BMS Release Asses			ssess	sment Phase 2C Potential Preferential Pathway Evaluation			/W-11D	Pg. <u>2</u> of <u>2</u>		
Lo	catio	n:	Humaca	o, PR		Drilling Co:	<u>GET</u>	Date 0	Completed:	<u>4/17/2017</u>
						Drilling Method:	Direct Push/Hollow Stem Auger	Date S	Started:	<u>4/17/2017</u>
			(ft amsl): To		<u>)</u>	Sampler / Drop:	Macrocore	Logge		Roselynn Stuart
Gro	und E	Elev (t amsl): 14	<u>.81</u>		Borehole Dia:	<u>7.25"</u>	Revie	wed by:	Terry Taylor
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol				USCS Symbol	GRAPHIC LOG	SOIL DES	SCRIPTION		WE	LL
40			1							
-16	0.0	0	1		///					
	0.0	0							^ ^	
-	0.0	0								
	0.0		00/00"							
	0.0	۱	39/60"	ML		(17.5-18.25') SILT, little sand, I odor.	ight dusky red, wet, low plasticity, no stai	ning, no	^ ^	
						(18.25-20.0') No recovery.				
						(10.20 20.0) 140 10004619.				(18-20') Bentonite
										seal
-20	0.0	0				(20.0-25.0') CLAY with some s	ilt and little sand, gray, moist, soft to med	ium,		
	0.0	0				medium plasticity, no odor, no	staining. Little organic matter present,	•		
-	0.0	0								
	0.0	0								
-	0.0	0								
	0.0	0	60/60"							
-	0.0		00/00							
										(20-27') 20/30 Sand
-24 —	0.0			CL						Pack
-	0.0	0								(22.27!) Saraan 2
	0.0	0								(22-27') Screen, 2- inch ID Sch 40 PVC, 0.020" slot size
	0.0	0				(25.0-26.0') CLAY with some s	ilt and little sand, some mottling, gray, me	oist, soft,	1 <mark>:#:</mark>	
	0.0	0				medium plasticity, no odor, no	staining.			
	0.0	0				(26.0-28.0') CLAY with some s	ilt and little sand, some mottling, gray, m	oist, stiff	1 1	
	0.0	0				medium plasticity, no odor, no	staining.	,,		
-	0.0	0								(27') Bottom
	0.0	0	36/60"							
-28						(22.2.20.20.1)			-	
						(28.0-30.0') No recovery.				
						(30.0') End of boring.			7	

Ī	ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:	
	Environmental Consultants		
	2700 Westchester Ave, Suite 417		
	Purchase, NY 10577		
	914-251-0400	Depth to Saturated Soil: 7.0 ft bgl	Water Level: 5.5 ft btc

Pro	<u>-</u>				elease Assessment Phase 2C Potential Preferential Pathway Evaluation				<u>IS</u> Pg. <u>1</u> of <u>1</u>
Loc	cation:		Humacac	<u>, PR</u>		Drilling Co:	<u>GET</u>	Date Complete	d: <u>4/17/2017</u>
			t amsl): <u>TO</u> 0			Drilling Method: Direct Push/Hollow Stem Auger Sampler / Drop: Macrocore		Date Started: Logged by: Reviewed by:	4/17/2017 Roselynn Stuart Terry Taylor
			, <u></u>	<u> </u>		Boronole Bla.	7.25"		1011 7 14 7101
DEPTH (ft) PID (ppm) SAMPLES RECOVERY (in) USCS Symbol			GRAPHIC LOG	SOIL DES	SCRIPTION		WELL		
0									
						(0.0-0.25') Asphalt/concrete.			
	0.0		12/12"			(0.25-4.0') FILL: clay with fine plasticity, no odor, no staining.	sand, grayish brown, dry, medium to stiff	f, medium	
	0.0		12/12"						A Gelow TOC-2') Grout Cement with 3% bentonite
-	0.0								
	0.0		12/12"						(0.4) D
	0.0		12/12"						(2-4') Bentonite seal (TOC-6') 2-inch ID Sch 40 PVC Riser
-4	0.0		12/12			(4.0-7.75') CLAV some silt fa	w sand, brownish yellow with light bluish	gray	
	0.0		12/12"			lenses, dry (silt/sand wet at 7.1	ft), medium plasticity, no odor, no stain	ing.	
	0.0								
-	0.0			CL					
	0.0								
+	0.0								
	0.0		42/60"			(7.75.9.5') SAND goares sub-	angular to subrounded, light brownish ye	Mow with	(4-11') 20/30 Sand Pack
-8	0.0			SP		red lenses, wet, no odor, no sta	aining.	SHOW WILLI	(6-11') Screen, 2-inch
	0.0				• •	(8.5-10.0') No recovery.			ID Sch 40 PVC, 0.020" slot size
	0.0		12/12"	SP		(10.0-11.0') SAND, coarse, subwith red lenses, wet, no odor, r	bangular to subrounded, light brownish y no staining.	rellow	
-	0.0				<mark>. • • •</mark>				(11') Bottom
-12									

ANDERSON MULHOLLAND & ASSOCIATES, INC.
Environmental Consultants
2700 Westchester Ave, Suite 417
Purchase, NY 10577
914-251-0400
Depth to Saturated Soil: 7.0 ft bgl Water Level: 5.5 ft btc

		ssess	essment Phase 2C Potential Preferential Pathway Evaluation			<u>/W-12D</u>	Pg. <u>1</u> of <u>2</u>			
Loc	ation:		Humacac	<u>, PR</u>		Drilling Co: GET			Completed: Started:	<u>4/20/2017</u> 4/20/2017
Meas	s Pt/ E	lev (f	t amsl): TO	C/17.18		Drilling Method: Sampler / Drop:	<u>Direct Push/Hollow Stem Auger</u> <u>Macrocore</u>	Logge		Roselynn Stuart
Grou	nd Ele	ev (ft	amsl): 17.5	<u>50</u>		Borehole Dia:	<u>7.25"</u>		ved by:	Terry Taylor
DEPTH (ft)	PID (ppm) PID (ppm) RECOVERY (in) GRAPHIC LOG GRAPHIC LOG						WE	LL		
0					· · · · ·				I	
-	0.0 0.0 0.0 0.0 0.0		51/60"			(0.0-3.25') FILL: sand and g	iravel, some clay, brown, dry, no odor, no	staining.		
-4	0.0			CL		(3.25-4.25') CLAY, brown, d	dry, hard, low plasticity, no odor, no stainin	g.		
	0.0					(4.25-5.0') No recovery.			^ ^ ^ ^ ^ ^	
_	0.0			СН	/////	(5.0-6.5') CLAY, yellowish b plasticity, no odor, no staining	orown with light bluish gray lenses, dry, stif ng.	f, high		
-8	0.0 0.0 0.0		39/60"	SC		(6.5-8.25') SAND, coarse to clay, yellowish brown with d	medium, subangular, moderate cementat lusky red lenses, dry, no odor, no staining.	ion, some		(Below TOC-16')
_						(8.25-10.0') No recovery.				Grout Cement with 3% bentonite
-	0.0			SC		(10.0-10.5') SAND, coarse to some clay, yellowish brown	o medium, subangular, moderate cementa with dusky red lenses, dry, no odor, no sta	ation, aining.		(TOC-20') 2-inch ID Sch 40 PVC Riser
-12	0.0 0.0 0.0 0.0 0.0 0.0		24/24"	SP		(10.5-14.0') SAND, coarse, with dusky red lenses, wet,	subangular to subrounded, loose, light gra no odor, no staining.	y to gray	^^^^^^	
	0.0		39/48"	SW		(14.0-15.25') SAND, fine to	medium, dusky red, wet, no odor, no stain	ing.		

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil: 7	ft bal	Water Level: 2.9 ft btc

				-		ssess	essment Phase 2C Potential Preferential Pathway Evaluation OSM\				Pg. <u>2</u> of <u>2</u>
	Loc	ation:		Humacac	<u>, PR</u>		Drilling Co:	<u>GET</u>		Completed:	4/20/2017
N	Лeas	Pt/ El	ev (f	t amsl): TO	C/17.18		Drilling Method: Sampler / Drop:	Direct Push/Hollow Stem Auger	Logge	started: d bv:	4/20/2017 Roselynn Stuart
				amsl): 17. 5			Borehole Dia:	Macrocore 7.25"		ved by:	Terry Taylor
					_						
	E)	<u></u>	ဖ	RY (in	ymbo	500					
	DEРІН (Щ)	PID (ppm)	SAMPLES	RECOVERY (in)	USCS Symbol	GRAPHIC LOG					
L i	รั	II.	SAI	REC	SN	GR	SOIL DES	SCRIPTION		WE	LL
1	_	0.0		ı	ı	1	•				
		0.0				<mark></mark>	(15.25-16.0') No recovery.				
-16		0.0				. /					
		0.0				/::/: :/::/	(16.0-19.25') SAND, fine to coa and trace silt, light gray to dark	arse, subangular, loose, some interlayer a gray, wet, no odor, no staining.	ed clay		
		0.0				/:/:: /::/					(16-18') Bentonite
		0.0			SC						seal
	-	0.0		39/48"							
		0.0				<u>/: :/:</u>					
	H	0.0									
							(19.25-20.0') No recovery.				
-20	-	0.0				• • • •	(20.0-23.5') SAND coarse sub	pangular, light gray to dark gray, wet, no	odor no	1	
		0.0					staining.	Jangular, light gray to dark gray, wet, no	odor, no		
	-	0.0									
		0.0			SP						(18-25') 20/30 Sand Pack
	-	0.0		42/48"							
		0.0									(20-25') Screen, 2- inch ID Sch 40 PVC, 0.020" slot size
		0.0									0.020 Siot size
		0.0					(23.5-24.0') No recovery.				
-24		0.0						bluish gray, moist, medium plasticity, no	odor, no		
		0.0			CL		staining.				(OF)) D
		0.0									(25') Bottom
		0.0				: //. :	(25.75-27.25') SAND fine to ac	parse, subangular, dense, moderate cen	nentation	1	
		0.0		39/48"	SC		some interlayered clay and trace	ce silt, gray, wet, no odor, no staining.	ionialion,		
		0.0				/::/					
		0.0				<u>/··/</u>	(27.25-28.0') No recovery.				
-28							(28.0') End of boring.				
							\ <u>,</u> , , , , , , , , , , , , , , , , , ,		/		

ANDERSON MULHOLLAND & ASSOCIATES, INC.	Notes:		
Environmental Consultants			
2700 Westchester Ave, Suite 417			
Purchase, NY 10577			
914-251-0400	Depth to Saturated Soil: 7	ft bgl	Water Level: 2.9 ft btc

Project:		:	BMS Rel	ease A	ssess	ment Phase 2C Potential Prefere	<u>OSMW-12S</u>	Pg. <u>1</u> of <u>1</u>				
Location: Hum		Humacao	, PR		Duilling Co.	CET	Date Completed:	4/20/2017				
						Drilling Co:	GET	Date Started:	4/20/2017			
Maca Dt/ Floy (ft amal): TOC/17 21						Drilling Method:	Direct Push/Hollow Stem Auger					
Meas Pt/ Elev (ft amsl): TOC/17.21						Sampler / Drop:	<u>Macrocore</u>	Logged by:	Roselynn Stuart			
Ground Elev (ft amsl): 17.44						Borehole Dia:	<u>7.25"</u>	Reviewed by:	Terry Taylor			
			(r	_	ا ن							
Œ			RECOVERY (in)	USCS Symbol	GRAPHIC LOG							
DEPTH (ft)	PID (ppm)	<u>H</u>	ËB	Sy	일							
ΡŢ	<u>a</u>	∄	ò	က္သ	🛓							
DE	⊟	SAMPLES	3EC)SC	3R/	SOIL DESC	CRIPTION	W	ELL			
0												
Ţ						(2.2.2.2.) = 1						
						(0.0-3.25') FILL: sand and grave	el, some clay, brown, dry, no odor, no sta	ining.				
	0.0				·				^			
-	0.0								^			
	•••				2/4				^			
	0.0				\ \cdot \cdot \land \text{7.}				^			
-	0.0								^			
	0.0				- · · · · · · · · · · · · · · · · · · ·				<u> </u>			
	0.0		51/60"		5.7				^			
L									^			
	0.0				302				(Below TOC-6') Grout Cement with 3%			
	0.0			CL		(3.25-4.25') CLAY, brown, dry, h	hard, low plasticity, no odor, no staining.		∧ bentonite			
-4				CL					^			
1	0.0								^			
						(4.25-5.0') No recovery.			^			
Г	0.0					(5.0-6.5') CLAV vellowish brown	n with light bluish gray lenses, dry, stiff, h	uigh A	(TOC-10') 2-inch ID Sch 40 PVC Riser			
	0.0					plasticity, no odor, no staining.	ii with light bidish gray lenses, dry, still, h		A Scri 40 PVC Riser			
	0.0			CH		processity, we called, we commisse						
	0.0											
	0.0				<u> : :/: </u>	(6.5-8.25') SAND, coarse to med	dium, subangular, moderate cementation	ı, some				
-	0.0				<u>/:://</u> :	clay, yellowish brown with dusky	y red lenses, dry, no odor, no staining.		(6-8') Bentonite seal			
			00/00"	SC	<u>/::/.</u>	1						
	0.0		39/60"		//				<u>-</u>			
-8	0.0				·/::/	1		<u> </u>	<u>:</u>			
						(8.25-10.0') No recovery.			<u>:</u>			
						(0.20 10.0) 110 10001019.						
-									<u>:</u>			
								——√ <u>:</u>	<u>:</u>			
-	0.0				<mark>/ / .</mark>	(10.0-10.5') SAND, coarse to me	edium, subangular, moderate cementatio	on,	<mark>:</mark>			
				SC	<u>/ : /</u>	some day, yellowish brown with	n dusky red lenses, dry, no odor, no stain	irig.	<mark>:</mark>			
	0.0					(10.5-14.0') SAND, coarse, suba	angular to subrounded, loose, light gray t	o gray 📙	<u>:</u>			
-	0.0		24/24"			with dusky red lenses, wet, no o	odor, no staining.	· · ·	<u>:</u>			
								<mark>:</mark> H	(8-15') 20/30 Sand			
	0.0							<mark>∷</mark>	Pack			
-12	0.0							<mark>:</mark> H	<u>:</u>			
				SP					(10-15') Screen, 2-			
	0.0								inch ID Sch 40 PVC,			
-	0.0				•	•			0.020" slot size			
	0.0		36/36"			•		<mark>∷</mark>	<u>:</u>			
	0.0				• • •			── ┤				
	""			CVA		(14.0-15.0') SAND, fine to media	um, dusky red, wet, no odor, no staining.		<u>:</u>			
	0.0			SW					<u>:</u>			
-	0.0							<u>::H</u>	(15') Bottom			
	0.0											
L												
-16												
ANID	ANDEDOON MILLUOLI AND A ACCOCIATED ING Meteor											
ANDERSON MULHOLLAND & ASSOCIATES, INC. Notes:												

ANDERSON MULHOLLAND & ASSOCIATES, INC.

Environmental Consultants
2700 Westchester Ave, Suite 417

Purchase, NY 10577
914-251-0400

Depth to Saturated Soil: 7 ft bgl Water Level: 2.9 ft btc